The antiproliferative immunosuppressive drug mycophenolic acid (MPA) is an uncompetitive inhibitor of inosine monophosphate dehydrogenase, a key enzyme in de novo synthesis of purine nucleotides. The latter are not only required for synthesis of DNA and RNA but also are essential for the regulation of numerous cellular signaling pathways modulated by guanine nucleotide binding proteins (G proteins). We undertook an analysis of the influence of MPA on protein expression in a T-lymphoblast cell line (CCRF-CEM), which displays concentration-dependent inhibition of proliferation by MPA to obtain insight into the influence of MPA on the cellular proteome.
View Article and Find Full Text PDFEpithelial cells of the thick ascending limb of Henle's loop (TALH cells) play a major role in the urinary concentrating mechanism. They are normally exposed to variable and often very high osmotic stress, which is particularly due to high sodium and chloride reabsorption and very low water permeability of the luminal membrane. It is already established that elevation of the activity of aldose reductase and hence an increase in intracellular sorbitol are indispensable for the osmotic adaptation and stability of the TALH cells.
View Article and Find Full Text PDF