Publications by authors named "Yulian Peng"

Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.

View Article and Find Full Text PDF

The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence.

View Article and Find Full Text PDF

COLD is a major naturally occurring stress that usually causes complex symptoms and severe yield loss in crops. R-loops function in various cellular processes, including development and stress responses, in plants. However, how R-loops function in COLD responses is largely unknown in COLD susceptible crops like rice (Oryza sativa L.

View Article and Find Full Text PDF

This paper constructs data from 30 provinces in mainland China from 1997 to 2016 and mainly adopts panel data fixed effects models to investigate how the promotion pressure on local officials affects regional carbon emissions. Our empirical results show that the relationship between the promotion pressure on local officials and regional carbon emissions has a dynamic evolution characteristic during our research period. Specifically, the promotion pressure on local officials is positively associated with regional carbon emissions before 2009; however, this relationship weakened after China's carbon emission regulatory policies were strengthened in 2010.

View Article and Find Full Text PDF

The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented.

View Article and Find Full Text PDF

A type of chirped Airy Gaussian vortex (CAiGV) localized wave packets in a quadratic index medium are studied by solving the paraxial differential equation. For the first time, the propagation properties of spatiotemporal CAiGV light bullets in the quadratic index medium are demonstrated. Some typical examples of the obtained solutions are based on the temporal and spatial chirp parameters, the initial velocity, the distribution factor, and the topological charge.

View Article and Find Full Text PDF

The evolution of the three-dimensional (3D) self-accelerating Airy-Ince-Gaussian (AiIG) and Airy-Helical-Ince-Gaussian (AiHIG) light bullets is investigated by solving the (3+1)D linear spatiotemporal evolution equation of an optical field analytically. As far as we know, the numerical experimental demonstrations of the Ince-Gaussian (IG) and Helical-Ince-Gaussian (HIG) beams in various modes are first developed to study the evolution characteristics of the different 3D spatiotemporal light bullets. A conclusion can be drawn that the different photoelastics, pulse stacked, boundary, elliptical ring and physically separated in-line vortices can be achieved by adjusting the ellipticity, the evolution distance and the mode-number of light bullets.

View Article and Find Full Text PDF

Controlling the focal length and the intensity of the optical focus in the media is an important task. Here we investigate the propagation properties of the sharply autofocused ring Airy Gaussian vortex beams numerically and some numerical experiments are performed. We introduce the distribution factor b into the initial beams, and discuss the influences for the beams.

View Article and Find Full Text PDF