A special technique has been developed for producing a composite aerogel which consists of graphene oxide and soy wax (GO/wax). The reduction of graphene oxide was carried out by the stepwise heating of this aerogel to 250 °C. The aerogel obtained in the process of the stepwise thermal treatment of rGO/wax was studied by IR and Raman spectroscopy, scanning electron microscopy, and thermogravimetry.
View Article and Find Full Text PDFThermally stable films were obtained from a water-based polyurethane (PU) dispersion with small (0.1-1.5 wt.
View Article and Find Full Text PDFNanocomposites based on waterborne polyurethane (WPU) and graphene oxide (GO) have been synthesized and characterized. It was found that after the incorporation of GO, WPU films became mechanically more rigid, and the Young's modulus increased by almost six times. It is shown that the lateral size of GO sheets influences the mechanical properties of WPU/GO composites.
View Article and Find Full Text PDFCellulose was produced by the modified traditional method with 35% yield from the stem of Sosnovsky hogweed and was characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffractometry, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). For , the degree of crystallinity (approximately 70%) and the glass transition temperature (105-108 °C) were determined. It was found that the whiteness characteristic in the case of was 92% and this significate was obtained without a bleaching procedure using chlorine-containing reagents.
View Article and Find Full Text PDFA graphene oxide aerogel (GOA) was formed inside a melamine sponge (MS) framework. After reduction with hydrazine at 60 °C, the electrical conductive nitrogen-enriched rGOA-MS composite material with a specific density of 20.1 mg/cm was used to fabricate an electrode, which proved to be a promising electrocatalyst for the oxygen reduction reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Polytetrafluoroethylene-based aerogel was synthesized for the first time. Graphene oxide was used as a binder. After reduction with hydrazine and annealing at 370 °C, the aerogel with a density of 29 ± 2 mg/cm became superhydrophobic.
View Article and Find Full Text PDF