Publications by authors named "Yulia Romanova"

The problem of treating cancer patients with lung cancer has become more difficult due to the SARS-CoV-2 viral infection and concomitant bacterial lesions. The analysis shows that the photodynamic effect of long-wavelength polycationic photosensitizers suppresses the tumor process (including the destruction of cancer stem cells), SARS-CoV-2 coronavirus infection, Gram-positive and Gram-negative bacteria, including those that can cause pneumonia. Therefore, the photodynamic approach using such photosensitizers is promising for the development of an effective treatment method for patients with lung cancer, including those with SARS-CoV-2 infection and bacterial complications.

View Article and Find Full Text PDF

Here, we demonstrate that human neutrophil interaction with the bacterium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs.

View Article and Find Full Text PDF

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with .

View Article and Find Full Text PDF

Background: The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms.

Methods: Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation.

View Article and Find Full Text PDF

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S.

View Article and Find Full Text PDF

Extracellular matrix plays a pivotal role in biofilm biology and proposed as a potential target for therapeutics development. As matrix is responsible for some extracellular functions and influence bacterial cytotoxicity against eukaryotic cells, it must have unique protein composition. P.

View Article and Find Full Text PDF

Background: The treatment of patients after mechanical ventilation of lungs suffering from a multi-species infection of the tracheobronchial tree can be complicated.. The situation is aggravated in patients with post-intubation tracheal stenosis, where infection plays a leading pathogenetic role in damage to the tracheal wall.

View Article and Find Full Text PDF

Leukotriene synthesis in neutrophils is critical for host survival during infection. In particular, leukotriene B (LTB) is a powerful neutrophil chemoattractant that plays a crucial role in neutrophil swarming. In this work, we demonstrated that preincubation of human neutrophils with strongly stimulated LTB production induced by the bacterial chemoattractant, peptide N-formyl-L-methionyl-L-leucyl-l-phenylalanine (fMLP), while the reverse sequence of additions was ineffective.

View Article and Find Full Text PDF

Mimicking bacterial DNA, synthetic CpG-containing oligodeoxyribonucleotides (CpG-ODNs) have a powerful immunomodulatory potential. Their practical application is mainly associated with the production of vaccines, where they are used as adjuvants, as well as in local antimicrobial therapy. CpG-ODNs act on a wide variety of immune cells, including neutrophilic granulocytes.

View Article and Find Full Text PDF

Neutrophil-mediated innate host defense mechanisms include pathogen elimination through bacterial phagocytosis, which activates the 5-lipoxygenase (5-LOX) product synthesis. Here, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs), which mimic the receptor-recognized sites of bacterial (CpG-ODNs) and genomic (G-rich ODNs) DNAs released from the inflammatory area, on the neutrophil functions after cell stimulation with . A possible mechanism for ODN recognition by Toll-like receptor 9 (TLR9) and RAGE receptor has been proposed.

View Article and Find Full Text PDF

A novel, successful method of bactericidal treatment of pathogenic bacterial biofilms in vitro by laser-induced forward transfer of metallic nanoparticles from a polyethylene terephthalate polymeric substrate was suggested. Transferred nanoparticles were characterized by scanning and transmission electron microscopy, energy-dispersive X-ray and Raman spectroscopy. The antibacterial modality of the method was tested on Gram-positive () and Gram-negative () bacterial biofilms in vitro, revealing their complete destruction.

View Article and Find Full Text PDF

species are common in tropical and subtropical zones in environmental samples according to numerous studies. Here, we describe an environmental case of resident in biofilms associated with spp. roots in Moscow region, Russia (warm-summer humid continental climate zone).

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the gut microbiota and IBD biomarkers in patients from Kazan, Russia, addressing the growing interest in IBD in newly industrialized countries.* -
  • Researchers found significant changes in the gut microbiota of IBD patients, including increased levels of certain bacteria and decreased levels of beneficial species, indicating a dysbiotic state.* -
  • The findings suggest that these changes, particularly the imbalance of short-chain fatty acids (SCFAs), may impact important metabolic processes like hydrogen metabolism, which is crucial for understanding the disease.*
View Article and Find Full Text PDF

We report the possibility of a time-resolved bacterial live/dead dynamics observation with the use of plasmonic nanospikes. Sharp nanospikes, fabricated on a 500-nm thick gold film by laser ablation with the use of 1030-nm femtosecond pulses, were tested as potential elements for antibacterial surfaces and plasmonic luminescence sensors. bacteria were stained by a live/dead viability kit, with the dead microorganisms acquiring the red colour, caused by the penetration of the luminescent dye propidium iodide through the damaged cell membrane.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is an important public health problem in the world. The aim of our research was to identify novel potential serum biomarkers of renal injury. ELISA assay showed that cytokines and chemokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGFb, G-CSF, GM-CSF, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-1bb, RANTES, TNF-α and VEGF were significantly higher (R > 0.

View Article and Find Full Text PDF

Human neutrophils are the first line of defense against bacterial and viral infections. They eliminate pathogens through phagocytosis, which activate the 5-lipoxygenase (5-LOX) pathway resulting in synthesis of leukotrienes. Using HPLC analysis, flow cytometry, and other biochemical methods, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs) able to fold into G-quadruplex structures on the main functions of neutrophils.

View Article and Find Full Text PDF

Surface-enhanced IR absorption (SEIRA) microscopy was used to reveal main chemical and physical interactions between bacteria and different laser-nanostructured bactericidal Si surfaces via simultaneous chemical enhancement of the corresponding IR-absorption in the intact functional chemical groups. A cleaner, less passivated surface of Si nanoripples, laser-patterned in water, exhibits much stronger enhancement of SEIRA signals compared to the bare Si wafer, the surface coating of oxidized Si nanoparticles and oxidized/carbonized Si (nano) ripples, laser-patterned in air and water. Additional very strong bands emerge in the SEIRA spectra on the clean Si nanoripples, indicating the potential chemical modifications in the bacterial membrane and nucleic acids during the bactericidal effect.

View Article and Find Full Text PDF

We studied the effects of a synthetic CpG oligonucleotide (CpG ODN2006) on polymorphonuclear leukocyte (PMNL, neutrophil) survival and oxidant status. CpG ODN2006 showed a dose-dependent effect on the apoptosis of resting neutrophils. Without affecting the viability of resting cells, low concentrations of CpG ODN2006 interfered with Salmonella typhimurium-mediated viability prolongation and increased neutrophil apoptosis to control levels.

View Article and Find Full Text PDF

causes various infectious diseases, from skin impetigo to life-threatening bacteremia and sepsis, thus appearing an important target for antimicrobial therapeutics. In turn, the rapid development of antibiotic resistance and biofilm formation makes it extremely robust against treatment. Here, we unravel the molecular mechanism of the antimicrobial activity of the recently unveiled consisting of three pharmacophores: chlorinated 2(5)-furanone, sulfone, and -menthol moieties.

View Article and Find Full Text PDF

Background: Nitric Oxide (NO) is a key signalling molecule that has an important role in inflammation. It can be secreted by endothelial cells, neutrophils, and other cells, and once in circulation, NO plays important roles in regulating various neutrophil cellular activities and fate.

Objective: To describe neutrophil cellular responses influenced by NO and its concomitant compound peroxynitrite and signalling mechanisms for neutrophil apoptosis.

View Article and Find Full Text PDF

Human polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the immune response to bacterial and fungal infections and eliminate pathogens through phagocytosis. During phagocytosis of microorganisms, the 5-lipoxygenase (5-LOX) pathway is activated resulting in generation of leukotrienes, which mediate host defense. In this study, a library of oligodeoxyribonucleotides (ODNs) with varying numbers of human telomeric repeats (d(TTAGGG)) and their analogues with phosphorothioate internucleotide linkages and single-nucleotide substitutions was designed.

View Article and Find Full Text PDF

ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses and are characterized by high contagious nature, mutation rate, and antigen variability.

View Article and Find Full Text PDF

Ceruloplasmin, an acute-phase protein, can affect the activity of leukocytes through its various enzymatic activities and protein-protein interactions (with lactoferrin, myeloperoxidase, eosinophil peroxidase, serprocidins, and 5-lipoxygenase (5-LOX), among others). However, the molecular mechanisms of ceruloplasmin activity are not clearly understood. In this study, we tested the ability of two synthetic peptides, RPYLKVFNPR (883-892) (P1) and RRPYLKVFNPRR (882-893) (P2), corresponding to the indicated fragments of the ceruloplasmin sequence, to affect neutrophil activation.

View Article and Find Full Text PDF

Biofilm formation by spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A "lacking biofilm production" (LBP) strain GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis.

View Article and Find Full Text PDF

Polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the initiation and resolution of the inflammatory response, and neutrophil apoptosis is a critical step in resolving inflammation. We examined the effects of oligodeoxynucleotide (ODN) species with different numbers of phosphodiester and phosphorothioate bonds on leukotriene synthesis in PMNLs and on neutrophil apoptosis. Our modifications were based on the well-known ODN2216 molecule (Krug et al.

View Article and Find Full Text PDF