Publications by authors named "Yulia R Zakharova"

Metabarcoding using high throughput sequencing of amplicons of the 18S rRNA gene is one of the widely used methods for assessing the diversity of microeukaryotes in various ecosystems. We investigated the effectiveness of the V4 and V8-V9 regions of the 18S rRNA gene by comparing the results of metabarcoding microeukaryotic communities using the DADA2 (ASV), USEARCH-UNOISE3 (ZOTU), and USEARCH-UPARSE (OTU with 97% similarity) algorithms. Both regions showed similar levels of genetic variability and taxa identification accuracy.

View Article and Find Full Text PDF

Microorganisms exhibit seasonal succession governed by physicochemical factors and interspecies interactions, yet drivers of this process in different environments remain to be determined. We used high-throughput sequencing of 16S rRNA and 18S rRNA genes to study seasonal dynamics of bacterial and microeukaryotic communities at pelagic site of Lake Baikal from spring (under-ice, mixing) to autumn (direct stratification). The microbial community was subdivided into distinctive coherent clusters of operational taxonomic units (OTUs).

View Article and Find Full Text PDF

Diatoms are a group of eukaryotic microalgae populating almost all aquatic and wet environments. Their abundance and species diversity make these organisms significant contributors to biogeochemical cycles and important components of aquatic ecosystems. Although significant progress has been made in studies of Diatoms (Bacillariophyta) over the last two decades, since the spread of "omics" technologies, our current knowledge of the molecular processes and gene regulatory networks that facilitate environmental adaptation remain incomplete.

View Article and Find Full Text PDF

Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively.

View Article and Find Full Text PDF

Silicon transporters (SIT) are the proteins, which capture silicic acid in the aquatic environment and direct it across the plasmalemma to the cytoplasm of diatoms. Diatoms utilize silicic acid to build species-specific ornamented exoskeletons and make a significant contribution to the global silica cycle, estimated at 240 ±40 Tmol a year. Recently SaSIT genes of the freshwater araphid pennate diatom Synedra acus subsp.

View Article and Find Full Text PDF

The pelagic zone of Lake Baikal is an ecological niche where phytoplankton bloom causes increasing microbial abundance in spring which plays a key role in carbon turnover in the freshwater lake. Co-occurrence patterns revealed among different microbes can be applied to predict interactions between the microbes and environmental conditions in the ecosystem. We used 454 pyrosequencing of 16S rRNA and 18S rRNA genes to study bacterial and microbial eukaryotic communities and their co-occurrence patterns at the pelagic zone of Lake Baikal during a spring phytoplankton bloom.

View Article and Find Full Text PDF

The composition of bacterial communities in Lake Baikal in different hydrological periods and at different depths (down to 1515 m) has been analyzed using pyrosequencing of the 16S rRNA gene V3 variable region. Most of the resulting 34 562 reads of the Bacteria domain have clustered into 1693 operational taxonomic units (OTUs) classified with the phyla Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, Acidobacteria and Cyanobacteria. It has been found that their composition at the family level and relative contributions to bacterial communities distributed over the water column vary depending on hydrological period.

View Article and Find Full Text PDF

The sub-ice environment of Lake Baikal represents a special ecotope where strongly increasing microbial biomass causes an "ice-bloom" contributing therefore to the ecosystem functioning and global element turnover under low temperature in the world's largest freshwater lake. In this work, we analyzed bacterial and microalgal communities and their succession in the sub-ice environment in March-April 2010-2012. It was found out that two dinoflagellate species (Gymnodinium baicalense var.

View Article and Find Full Text PDF

Insight into the role of bacteria in degradation of diatoms is important for understanding the factors and components of silica turnover in aquatic ecosystems. Using microscopic methods, it has been shown that the degree of diatom preservation and the numbers of diatom-associated bacteria in the surface layer of bottom sediments decrease with depth; in the near-bottom water layer, the majority of bacteria are associated with diatom cells, being located either on the cell surface or within the cell. The structure of microbial community in the near-bottom water layer has been characterized by pyrosequencing of the 16S rRNA gene, which has revealed 149 208 unique sequences.

View Article and Find Full Text PDF