Publications by authors named "Yulia Matiuhin"

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation.

View Article and Find Full Text PDF

BceF is a bacterial tyrosine kinase (BY-kinase) from , a Gram-negative bacterium accountable for respiratory infections in immunocompromised and cystic fibrosis patients. BceF is involved in the production of exopolysaccharides secreted to the biofilm matrix and promotes resistant and aggressive infections. BY-kinases share no homology with mammalian kinases, and thereby offer a means to develop novel and specific antivirulence drugs.

View Article and Find Full Text PDF

Any of seven lysine residues on ubiquitin can serve as the base for chain-extension, resulting in a sizeable spectrum of ubiquitin modifications differing in chain length or linkage type. By optimizing a procedure for rapid lysis, we charted the profile of conjugated cellular ubiquitin directly from whole cell extract. Roughly half of conjugated ubiquitin (even at high molecular weights) was nonextended, consisting of monoubiquitin modifications and chain terminators (endcaps).

View Article and Find Full Text PDF

As a signal for substrate targeting, polyubiquitin meets various layers of receptors upstream to the 26S proteasome. We obtained structural information on two receptors, Rpn10 and Dsk2, alone and in complex with (poly)ubiquitin or with each other. A hierarchy of affinities emerges with Dsk2 binding monoubiquitin tighter than Rpn10 does, whereas Rpn10 prefers the ubiquitin-like domain of Dsk2 to monoubiquitin, with increasing affinities for longer polyubiquitin chains.

View Article and Find Full Text PDF

The ubiquitin-like domain (UBL) of yeast protein Dsk2p is widely believed to recognize and bind to ubiquitin receptors on the proteasome and, as part of Dsk2p, to bridge polyubiquitinated substrates and proteasomal degradation machinery. Here we report NMR resonance assignment for (1)H, (15)N, and (13)C nuclei in the backbone and side chains of the UBL domain of Dsk2p. This assignment will aid in NMR studies focused on understanding of Dsk2's interactions with proteasomal receptors and its role as a polyubiquitin shuttle in the ubiquitin-dependent proteasomal degradation as well as other cellular pathways.

View Article and Find Full Text PDF

Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system.

View Article and Find Full Text PDF