Raman spectroscopy is a widely developing approach for noninvasive analysis that can provide information on chemical composition and molecular structure. High chemical specificity calls for developing different medical diagnostic applications based on Raman spectroscopy. This review focuses on the Raman-based techniques used in medical diagnostics and provides an overview of such techniques, possible areas of their application, and current limitations.
View Article and Find Full Text PDFThis work aims at studying Raman spectroscopy in combination with chemometrics as an alternative fast noninvasive method to detect chronic heart failure (CHF) cases. Optical analysis is focused on the changes in the spectral features associated with the biochemical composition changes of skin tissues. A portable spectroscopy setup with the 785 nm excitation wavelength was used to record skin Raman features.
View Article and Find Full Text PDFIn recent years, Raman spectroscopy has been used to study biological tissues. However, the analysis of experimental Raman spectra is still challenging, since the Raman spectra of most biological tissue components overlap significantly and it is difficult to separate individual components. New methods of analysis are needed that would allow for the decomposition of Raman spectra into components and the evaluation of their contribution.
View Article and Find Full Text PDFIn this study, patient data were combined with Raman and autofluorescence spectral parameters for more accurate identification of skin tumors. The spectral and patient data of skin tumors were classified by projection on latent structures and discriminant analysis. The importance of patient risk factors was determined using statistical improvement of ROC AUCs when spectral parameters were combined with risk factors.
View Article and Find Full Text PDFBackground And Objective: Skin cancer is the most common malignancy in whites accounting for about one third of all cancers diagnosed per year. Portable Raman spectroscopy setups for skin cancer "optical biopsy" are utilized to detect tumors based on their spectral features caused by the comparative presence of different chemical components. However, low signal-to-noise ratio in such systems may prevent accurate tumors classification.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2021
Dermatofibrosarcoma protuberans is a rare disease and this pathology provokes insufficient oncological alertness among clinicians. A possible way to increase the accuracy of early diagnosis of rare skin neoplasms is "optical biopsy" using Raman spectroscopy tissue response. This case report of a 32-year-old woman with a dermatofibrosarcoma protuberans demonstrates that Raman spectroscopy based "optical biopsy" can help to diagnose rare tumors.
View Article and Find Full Text PDFIn this study, we performed in vivo diagnosis of skin cancer based on implementation of a portable low-cost spectroscopy setup combining analysis of Raman and autofluorescence spectra in the near-infrared region (800-915 nm). We studied 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable setup. The studies considered the patients examined by GPs in local clinics and directed to a specialized Oncology Dispensary with suspected skin cancer.
View Article and Find Full Text PDFThe object of this paper is in vivo study of skin spectral-characteristics in patients with kidney failure by conventional Raman spectroscopy in near infrared region. The experimental dataset was subjected to discriminant analysis with the projection on latent structures (PLS-DA). Application of Raman spectroscopy to investigate the forearm skin in 85 adult patients with kidney failure (90 spectra) and 40 healthy adult volunteers (80 spectra) has yielded the accuracy of 0.
View Article and Find Full Text PDFThis paper comments on the article "Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools" by E. Guevara et al. The authors propose an optical method for noninvasive automated screening of type 2 diabetes mellitus.
View Article and Find Full Text PDFThe present paper studies the applicability of a portable cost-effective spectroscopic system for the optical screening of skin tumors. in vivo studies of Raman scattering and autofluorescence (AF) of skin tumors with the 785 nm excitation laser in the near-infrared region included malignant melanoma, basal cell carcinoma and various types of benign neoplasms. The efficiency of the portable system was evaluated by comparison with a highly sensitive spectroscopic system and with the diagnosis accuracy of a human oncologist.
View Article and Find Full Text PDFThe differentiation of skin melanomas and basal cell carcinomas (BCCs) was demonstrated based on combined analysis of Raman and autofluorescence spectra stimulated by visible and NIR lasers. It was ex vivo tested on 39 melanomas and 40 BCCs. Six spectroscopic criteria utilizing information about alteration of melanin, porphyrins, flavins, lipids, and collagen content in tumor with a comparison to healthy skin were proposed.
View Article and Find Full Text PDF