Adrenomedullin (ADM) is a multifaceted peptide hormone involved in numerous physiological processes, including vascular stability, vasodilation, angiogenesis, and anti-inflammatory responses. The processing of ADM results in several fragments, including midregional proadrenomedullin (MR-proADM), and glycine-extended ADM (ADM-Gly) and bioactive ADM (bio-ADM). MR-proADM, the stable ADM fragment, and bio-ADM, the active form of ADM with a short half-life, have been shown to be potent biomarkers in a variety of pathologies.
View Article and Find Full Text PDFContext: Peptidylglycine-α-amidating monooxygenase (PAM) is a critical enzyme in the endocrine system responsible for activation, by amidation, of bioactive peptides.
Objective: To define the clinical phenotype of carriers of genetic mutations associated with impaired PAM-amidating activity (PAM-AMA).
Design: We used genetic and phenotypic data from cohort studies: the Malmö Diet and Cancer (MDC; 1991-1996; reexamination in 2002-2012), the Malmö Preventive Project (MPP; 2002-2006), and the UK Biobank (UKB; 2012).
A one-step sandwich chemiluminescence immunometric assay (LIA) was developed for the quantification of bifunctional peptidylglycine-α-amidating monooxygenase (PAM) in human plasma (PAM-LIA). PAM is responsible for the activation of more than half of known peptide hormones through C-terminal α-amidation. The assay employed antibodies targeting specific catalytic PAM-subunits, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), to ensure detection of full-length PAM.
View Article and Find Full Text PDF[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H ). However, structural determinants of efficient H binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational-spectroscopic insights into the unexplored structure of the H -binding [NiFe] intermediate.
View Article and Find Full Text PDFNucleoside antibiotics are a large class of pharmaceutically relevant chemical entities, which exhibit a broad spectrum of biological activities. Most nucleosides belong to the canonical N-nucleoside family, where the heterocyclic unit is connected to the carbohydrate through a carbon-nitrogen bond. However, atypical C-nucleosides were isolated from Streptomyces bacteria over 50 years ago, but the molecular basis for formation of these metabolites has been unknown.
View Article and Find Full Text PDFThe yeast Hsp70/40 system SSB-RAC (stress 70 B-ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide-associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB-RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and SSB caused conditional loss of cell viability under protein-folding stress conditions.
View Article and Find Full Text PDFSaccharomyces cerevisiae uses several mechanisms for arsenic detoxification including the arsenate reductase Acr2p and the arsenite efflux protein Acr3p. ACR2 and ACR3 are transcribed in opposite directions from the same promoter and expression of these genes is regulated by the AP-1 (activator protein 1)-like transcription factor Yap8p. Yap8p has been shown to permanently associate with this promoter and to stimulate ACR2/ACR3 expression in response to arsenic.
View Article and Find Full Text PDFCells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G(1) and G(2) checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Delta mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Delta cells.
View Article and Find Full Text PDF