Thromb Res
January 2025
BMC Med
February 2024
Materials (Basel)
November 2023
Using H NMR spectroscopy, we studied the relative mobility of the NO group in 1-alkyl-5-nitro-1,2,4-triazoles in the reaction of nucleophilic heterocyclic substitution by aliphatic oligoethers. The main pathways of the substitution process and the composition of resultant products from competitive reactions were examined, and the key factors influencing the relative mobility of the nitro group, such as the nitrotriazole substrate constitution, the carbon skeleton length of the -nucleophilic agent and the process conditions, were discussed. Several independent competitive reactions directed towards the substitution of the nitro group at position C(5) in the alkyltriazole substrate by different types of nucleophiles such as alkoxide-, hydroxide- and triazolonate anions were observed to take place under conditions used.
View Article and Find Full Text PDFAn N-glycidyl-5-aminotetrazole homopolymer was synthesized herein by nucleophilic substitution of 5-aminotetrazole heterocycles for chlorine atoms in poly-(epichlorohydrin)-butanediol. Copolymers of N-glycidyl-5-aminotetrazole and glycidyl azide with a varied ratio of energetic elements were synthesized by simultaneously reacting the 5-aminotetrazole sodium salt and the azide ion with the starting polymeric matrix. The 5-aminotetrazole-based homopolymer was nitrated to furnish a polymer whose macromolecule is enriched additionally with energy-rich terminal ONO groups and nitrate anions.
View Article and Find Full Text PDFBMC Med
July 2022
The regularities and synthetic potentialities of the alkylation of 4(5)-nitro-1,2,3-triazole in basic media were explored, and new energetic ionic and nitrotriazole-based coordination compounds were synthesized in this study. The reaction had a general nature and ended with the formation of 1-, 2-, and 3-alkylation products, regardless of the conditions and reagent nature (alkyl- or aryl halides, alkyl nitrates, dialkyl sulfates). This reaction offers broad opportunities for expanding the variability of substituents on the nitrotriazole ring in the series of primary and secondary aliphatic, alicyclic, and aromatic substituents, which is undoubtedly crucial for solving the problems related to both high-energy materials development and medicinal chemistry when searching for new efficient bioactive compounds.
View Article and Find Full Text PDFEnviron Res
May 2022