Shear flow-induced migration is an important physiological phenomenon experienced by multiple cell types, including leukocytes and cancer cells. However, molecular mechanisms by which cells sense and directionally migrate in response to mechanical perturbation are not well understood. social amoeba, a well-established model for studying amoeboid-type migration, also exhibits directional motility when exposed to shear flow, and this behavior is preceded by rapid and transient activation of the same signal transduction network that is activated by chemoattractants.
View Article and Find Full Text PDFChemotaxis, or migration up a gradient of a chemoattractant, is the best understood mode of directed migration. Studies using social amoeba Dictyostelium discoideum revealed that a complex signal transduction network of parallel pathways amplifies the response to chemoattractants, and leads to biased actin polymerization and protrusion of a pseudopod in the direction of a gradient. In contrast, molecular mechanisms driving other types of directed migration, for example, due to exposure to shear flow or electric fields, are not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants.
View Article and Find Full Text PDFPolarized migrating cells display signal transduction events, such as activation of phosphatidylinositol 3-kinase (PI3K) and Scar/Wave, and respond more readily to chemotactic stimuli at the leading edge. We sought to determine the basis of this polarized sensitivity. Inhibiting actin polymerization leads to uniform sensitivity.
View Article and Find Full Text PDFChemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
Chemotaxis depends on a network of parallel pathways that coordinate cytoskeletal events to bias cell movement along a chemoattractant gradient. Using a forward genetic screen in Dictyostelium discoideum, we identified the Ste20 kinase KrsB, a homolog of tumor suppressors Hippo and MST1/2, as a negative regulator of cell spreading and substrate attachment. The excessive adhesion of krsB(-) cells reduced directional movement and prolonged the streaming phase of multicellular aggregation.
View Article and Find Full Text PDFMethods Mol Biol
November 2011
Studies using the social amoeba Dictyostelium discoideum have greatly contributed to the current understanding of the signaling network that underlies chemotaxis. Since directed migration is essential for normal D. discoideum multicellular development, mutants with chemotactic impairments are likely to have abnormal developmental morphologies.
View Article and Find Full Text PDFInadequate proliferation and/or differentiation of preadipocytes may lead to adipose tissue dysfunction characterized by hypertrophied, insulin-resistant adipocytes. Platelet-derived growth factor (PDGF) may alter adipose tissue function by promoting proliferation of preadipocytes. Two principal signaling pathways that regulate proliferation are PI3K/PI(3,4,5)P3/Akt and Shc/Ras/ERK1/2.
View Article and Find Full Text PDFThe role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes.
View Article and Find Full Text PDF