Publications by authors named "Yulia A Filip'echeva"

The bacterium Azospirillum brasilense can swim and swarm owing to the work of polar and lateral flagella. Its major surface glycopolymers consist of lipopolysaccharides (LPS) and Calcofluor-binding polysaccharides (Cal phenotype). Motility and surface glycopolymers are important for the interactions of plant-associated bacteria with plants.

View Article and Find Full Text PDF

Bacteria Azospirillum brasilense may swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf). They also construct sessile biofilms on various interfaces. As compared to the wild-type strain Sp245, the previously characterized Fla Laf flhB1 mutant Sp245.

View Article and Find Full Text PDF

The bacterium Azospirillum brasilense can swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella, respectively. They also form biofilms on various interfaces. Experimental data on flagellar assembly and social behaviours in these bacteria are scarce.

View Article and Find Full Text PDF

Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella.

View Article and Find Full Text PDF