Thermosensitive hydrogel scaffolds have attracted particular attention in three-dimensional (3D) cell culture. It is very necessary to develop a type of thermosensitive hydrogel material with low shrinkage, and excellent biocompatibility and biodegradability. Here, five types of thermosensitive microgels with different volume phase transition temperature (VPTT) or particle sizes were first synthesized using 2-methyl-2-propenoic acid-2-(2-methoxyethoxy) ethyl ester (MEOMA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as thermosensitive monomers by free radical polymerization.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2021
Hydrogels have outstanding research and application prospects in the biomedical field. Among them, the design and preparation of biomedical hydrogels with deoxyribonucleic acid (DNA) as building blocks have attracted increasing research interest. DNA-based hydrogel not only has the skeleton function of hydrogel, but also retains its biological functions, including its excellent selection specificity, structural designability, precise molecular recognition ability, outstanding biocompatibility, and so on.
View Article and Find Full Text PDFThe ambient stability and processability of organic solar cells (OSCs) are important factors for their commercialization. Herein, we selected four benzo[1,2-:4,5-']difuran (BDF) polymers and two electron acceptors to examine the role of photovoltaic materials in the ambient stability. The investigations revealed that the MoO layer is the detrimental factor for the ambient stabilities.
View Article and Find Full Text PDFA novel fused perylene diimide (PDI)-based polymer electron acceptor (PFPDI-BDF) with a built-in twisting configuration was constructed for application in all-polymer solar cells (all-PSCs). To shed light on the compatibility of the FPDI polymer acceptor and to identify a suitable polymer donor for device applications, we considered herein to investigate three polymer donors (PBDB-T, PTB7-Th, and PCPDTFBT) with different optical and electronic properties as well as polymer chain packing behavior for comparing the device performance. After being fabricated with PFPDI-BDF, polymer donor PBDB-T with a wide band gap showed a decent power conversion efficiency (PCE) of 4.
View Article and Find Full Text PDFAll-polymer solar cells have gained large attention in recent years because of their tunable energy levels and absorption spectra for both polymeric donor and acceptor. Comparing with the numerous polymeric donors, the development of polymeric acceptors was relatively slow. Rylene diimide-based polymers are regarded as the most promising n-type polymers, which were widely investigated in the past decade, and some novel rylene diimide structures are constantly designed.
View Article and Find Full Text PDFWe report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.
View Article and Find Full Text PDFPolymer solar cells have received considerable attention due to the advantages of low material cost, tunable band gaps, ultralight weight, and high flexible properties, and they have been a promising organic photovoltaic technology for alternative non-renewable fossil fuels for the past decade. Inspired by these merits, numerous state-of-the-art organic photovoltaic materials have been constructed. Among them, indaceno-based polymer materials have made an impact in obtaining an impressive power conversion efficiency of more than 11%, which shows the momentous potential of this class of materials for commercial applications.
View Article and Find Full Text PDFA novel three-dimensional (3D) magnetic chlorogenic acid (CGA) imprinted polymer (MMIP) was prepared with novel carbon hybrid nanocomposite as the carrier, chlorogenic acid as the template molecule, and methacrylic acid as the functional monomer. The 3D MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, and UV spectrometry in detail. The results showed that the imprinted layer was attached successfully on the surface of a 3D magnetic carbon hybrid nanocomposite.
View Article and Find Full Text PDFWe describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry.
View Article and Find Full Text PDFA novel, facile and low cost process for imprinting protein on the surface of magnetic multiwalled carbon nanotubes (MMWNTs) was developed using human serum albumin (HSA) as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized with transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) in detail. The maximum adsorption capacity of the magnetic imprinted polymers toward HSA was 66.
View Article and Find Full Text PDFA novel molecularly imprinted polymer based on magnetic phenyl-modified multi-walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry.
View Article and Find Full Text PDFIn this paper, a highly selective sample clean-up procedure combining magnetic dummy molecular imprinting with solid-phase extraction was developed for rapid separation and determination of 4-nonylphenol (NP) in the environmental water samples. The magnetic dummy molecularly imprinted polymers (mag-DMIPs) based on multi-walled carbon nanotubes were successfully synthesized with a surface molecular imprinting technique using 4-tert-octylphenol as the dummy template and tetraethylorthosilicate as the cross-linker. The maximum adsorption capacity of the mag-DMIPs for NP was 52.
View Article and Find Full Text PDF