Publications by authors named "Yulema Valero"

Host-pathogen interactions and the design of vaccines for aquaculture fish viruses are challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad) vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic viruses. For this purpose, European sea bass () DLB-1 and gilthead seabream () SaB-1 brain cell lines were infected with Ad5 or Ad5/40 vectors expressing GFP, and we evaluated their capacity for infection by fluorescence microscopy and flow cytometry, as well as their antiviral innate immune response by the transcription of gene markers ( and ).

View Article and Find Full Text PDF
Article Synopsis
  • Sexual dimorphism in immunity shows that males and females have different immune responses, with females typically having stronger immunity due to oestrogens, while males are more prone to infections.
  • Research on fish, specifically yellowtail kingfish juveniles, indicates that males display significantly better innate immune responses compared to females, suggesting that females could be more susceptible to pathogens.
  • The study highlights the need for further exploration of sex-based immune differences in fish, which could inform breeding practices and disease management in aquaculture.
View Article and Find Full Text PDF

E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals' HERC3, HERC5, and HERC6 are known to participate in immune responses, with major involvement in the antiviral response.

View Article and Find Full Text PDF

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector.

View Article and Find Full Text PDF

Cell-mediated cytotoxicity is a complex immune mechanism that involves the release of several killing molecules, being perforin (PRF) one of the most important effector players. Perforin is synthesized by T lymphocytes and natural killer cells in mammals and responsible for the formation of pores on the target cell membrane during the killing process. Although perforin has been extensively studied in higher vertebrates, this knowledge is very limited in fish.

View Article and Find Full Text PDF

Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development.

View Article and Find Full Text PDF

Viral encephalopathy and retinopathy caused by nervous necrosis virus (NNV), is one of the most threatening viral diseases affecting marine fish worldwide. In vitro propagation of NNV strains is essential for the design of effective control measures. In the present study we analysed both the susceptibility and the permissiveness of five fish cell lines (E-11, GF-1, SAF-1, DLB-1, and SaB-1) to three NNV strains (one RGNNV, one SJNNV, and one reassortant RGNNV/SJNNV).

View Article and Find Full Text PDF

Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in the cell-mediated cytotoxic (CMC) response.

View Article and Find Full Text PDF

Nervous necrosis virus (NNV), the causative agent of viral encephalopathy and retinopathy (VER), is one of the most threatening viruses affecting marine and freshwater fish species worldwide. Senegalese sole is a promising fish species in Mediterranean aquaculture but also highly susceptible to NNV and VER outbreaks, that puts its farming at risk. The development of vaccines for aquaculture is one of best tools to prevent viral spread and sudden outbreaks, and virus inactivation is the simplest and most cost-effective method available.

View Article and Find Full Text PDF

17α-ethynilestradiol (EE) and tamoxifen (Tmx) are pollutants world-wide distributed in aquatic environments. Gilthead seabream, Sparus aurata L., is highlighted as a species model of intensively culture in anthropogenic disturbed environments.

View Article and Find Full Text PDF

Fish NK-lysin (NKL), an orthologous to human granulysin, exerts a dual role as an antimicrobial peptide (AMP) and as a direct executor of T cytotoxic and natural killer cells during the cell-mediated cytotoxic (CMC) response. Although its best-known function is as AMP against bacteria, recent studies point to a special role of NKL in antiviral responses. Nodavirus (NNV) is a spreading threat in Mediterranean aquaculture.

View Article and Find Full Text PDF

Granzymes (Gzm) are serine proteases, contained into the secretory granules of cytotoxic cells, responsible for the cell-mediated cytotoxicity (CMC) against tumor cells and intracellular pathogens such as virus and bacteria. In fish, they have received little attention to their existence, classification or functional characterization. Therefore, we aimed to identify and evaluate their functional and transcriptomic relevance in the innate CMC activity of two relevant teleost fish species, gilthead seabream and European sea bass.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) form part of the innate immune response, which is of vital importance in fish, especially in eggs and early larval stages. Compared to antibiotics, AMPs show action against a wider spectrum of pathogens, including viruses, fungi and parasites, are more friendly to the environment, and do not seem to generate resistance in bacteria. Thus, we have tested in vitro the potential use of several synthetic peptides as antimicrobial agents in aquaculture: frog Caerin1.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are considered to be amongst the most powerful tools for the fight against pathogens in fish, since they form part of the innate immune response, which is especially vital in eggs and early larval stages, when the immune system is developing. The fish responsible for a large part of the profits in Mediterranean aquaculture is European sea bass (Dicentrarchus labrax), a species greatly susceptible to nodavirus (NNV), especially in the larval and juvenile stages. In this work, polyclonal antibodies were developed and used to detect and quantify NK-lysin, dicentracin and hepcidin AMPs in European sea bass eggs and during larval development, as well as to evaluate their regulation in juvenile specimens upon NNV infection.

View Article and Find Full Text PDF

NK-lysin, despite being a direct effector of cytotoxic T and natural killer cells, is an antimicrobial peptide (AMP) with known antibacterial function in vertebrates and so in fish. Its presence has been described in different tissues of teleost fish. One of the strongest antimicrobial barriers in fish is skin-secreted mucus; however, this mucus has been found to contain only a small number of AMPs.

View Article and Find Full Text PDF

Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge.

View Article and Find Full Text PDF

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina.

View Article and Find Full Text PDF

Nervous necrosis virus (NNV) causes high mortalities in several marine species. We aimed to evaluate the innate cell-mediated cytotoxic (CMC) activity of head-kidney leucocytes (HKLs) isolated from naïve European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), a very susceptible and resistant fish species to NNV, respectively, against fish cell lines infected with NNV. Seabream HKLs showed significantly increased innate CMC activity against NNV-infected cells, compared to those uninfected, while sea bass HKLs failed to do so.

View Article and Find Full Text PDF

Histones (H1 to H4) are the primary proteins which mediate the folding of DNA into chromatin; however, and in addition to this function, histones have been also related to antimicrobial peptides (AMPs) activity in vertebrates, in fact, mammalian H1 is mobilized as part as the anti-viral immune response. In fish, histones with AMP activity have been isolated and characterized mainly from skin and gonads. One of most threatening pathogens for wild and cultured fish species nowadays is nodavirus (NNV), which target tissues are the brain and retina, but it is also able to colonize the gonad and display vertical transmission.

View Article and Find Full Text PDF

Vaccines for fish need to be improved for the aquaculture sector, with DNA vaccines and the oral administration route providing the most promising improvements. In this study, we have created an oral chitosan-encapsulated DNA vaccine (CP-pNNV) for the nodavirus (NNV) in order to protect the very susceptible European sea bass (Dicentrarchus labrax). Our data show that the oral CP-pNNV vaccine failed to induce serum circulating or neutralizing specific antibodies (immunoglobulin M) or to up-regulate their gene expression in the posterior gut.

View Article and Find Full Text PDF

Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally.

View Article and Find Full Text PDF

Peroxiredoxins (Prxs) are a family of antioxidant enzymes that protect cells from oxidative damage. In addition, Prxs may act as modulators of inflammation, protect against cell death and tumour progression, and facilitate tissue repair after damage. The most studied roles of Prx1 and Prx2 are immunological.

View Article and Find Full Text PDF

One of the most powerful innate immune responses against viruses is mediated by type I IFN. In teleost fish, it is known that virus infection triggers the expression of ifn and many IFN-stimulated genes, but the viral RNA sensors and mediators leading to IFN production are scarcely known. Thus, we have searched for the presence of these genes in gilt-head sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax), and evaluated their expression after infection with viral nervous necrosis virus (VNNV) in the brain, the main viral target tissue, and the gonad, used to transmit the virus vertically.

View Article and Find Full Text PDF

The European sea bass, Dicentrarchus labrax L., is a seasonal gonochoristic species, the males of which are generally mature during their second year of life. It has been demonstrated that cytokines and immune cells play a key role in the testicular development.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have a crucial role in the fish innate immune response, being considered a fundamental component of the first line of defence against pathogens. Moreover, AMPs have not been studied in the fish gonad since this is used by some pathogens as a vehicle or a reservoir to be transmitted to the progeny, as occurs with nodavirus (VNNV), which shows vertical transmission through the gonad and/or gonadal fluids, but no study has looked into the gonad of infected fish. In this framework, we have characterized the antimicrobial response triggered by VNNV in the testis of European sea bass, a very susceptible species of the virus, and in the gilthead seabream, which acts as a reservoir, both in vivo and in vitro, and compared with that present in the serum and brain (target tissue of VNNV).

View Article and Find Full Text PDF