IEEE J Biomed Health Inform
December 2024
Identifying drug-target interactions (DTI) is crucial in drug discovery and repurposing, and in silico techniques for DTI predictions are becoming increasingly important for reducing time and cost. Most interaction-based DTI models rely on the guilt-by-association principle that "similar drugs can interact with similar targets". However, such methods utilize precomputed similarity matrices and cannot dynamically discover intricate correlations.
View Article and Find Full Text PDFVertical transmission of plant viruses through seeds has been known for a century, yet the mechanism for seeds to combat viral infection remains unclear. In this issue of Cell Host & Microbe, Liu and Ding demonstrate the genetic requirement of RNA silencing (RNAi) pathway for plants to suppress seed transmission.
View Article and Find Full Text PDFTobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
View Article and Find Full Text PDFPlants emit volatiles as signals to trigger broad physiological responses, including airborne defense (AD). Gong et al. (Nature 2023; 622: 139-145) recently reported the genetic framework of how plants use AD to combat aphids and viruses.
View Article and Find Full Text PDFPlant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research.
View Article and Find Full Text PDFIn the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown.
View Article and Find Full Text PDFAphids transmit viruses and are destructive crop pests. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants. However, the mechanism underlying AD is unclear.
View Article and Find Full Text PDFAs sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery.
View Article and Find Full Text PDFGeminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections.
View Article and Find Full Text PDFAutophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects.
View Article and Find Full Text PDFAutophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people's sights.
View Article and Find Full Text PDFThe genetic link between calcium signaling and RNA interference (RNAi) has remained undiscovered until now. A new study shows that wound-triggered calcium flux acts as an initial messenger for priming RNAi for its role in plant antiviral defense. This paves the way to investigate plant development and response to (a)biotic stresses.
View Article and Find Full Text PDFVacuoles are the largest compartments in plant cells and are involved in plant development and response to abiotic and biotic stresses. Vacuolar acidification is essential for vacuoles in various physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection have never been reported.
View Article and Find Full Text PDFWounding evokes transient increases in cytosolic calcium (Ca) concentration. Visualizing real-time Ca flux provides new insights into Ca-signaling pathways. Here, we outline a protocol to detect insect feeding-induced Ca flux elevation in leaves based on the reporter system by Leica fluorescence stereo microscopes (LFSM).
View Article and Find Full Text PDFVacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γa , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants.
View Article and Find Full Text PDFVirus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize.
View Article and Find Full Text PDFRNA interference (RNAi) is an across-kingdom gene regulatory and defense mechanism. However, little is known about how organisms sense initial cues to mobilize RNAi. Here, we show that wounding to Nicotiana benthamiana cells during virus intrusion activates RNAi-related gene expression through calcium signaling.
View Article and Find Full Text PDFInsulin-signaling requires conformational change: whereas the free hormone and its receptor each adopt autoinhibited conformations, their binding leads to structural reorganization. To test the functional coupling between insulin's "hinge opening" and receptor activation, we inserted an artificial ligand-dependent switch into the insulin molecule. Ligand-binding disrupts an internal tether designed to stabilize the hormone's native closed and inactive conformation, thereby enabling productive receptor engagement.
View Article and Find Full Text PDFAutophagy
January 2021
Autophagy, a bulk degradation system conserved among most eukaryotes, is also involved in responses to viral infection in plant. In our previous study, a new host factor P3IP was identified to interact with RSV (rice stripe virus) p3 and mediate its autophagic degradation to limit the viral infection. Here, we further discovered that P3IP of (NbP3IP) participated in regulation of autophagy.
View Article and Find Full Text PDF