Publications by authors named "Yulai Cong"

Text generation is a key component of many natural language tasks. Motivated by the success of generative adversarial networks (GANs) for image generation, many text-specific GANs have been proposed. However, due to the discrete nature of text, these text GANs often use reinforcement learning (RL) or continuous relaxations to calculate gradients during learning, leading to high-variance or biased estimation.

View Article and Find Full Text PDF

To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable posterior inference for the parameters of the generative network, we develop topic-layer-adaptive stochastic gradient Riemannian MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. Given a posterior sample of the global parameters, in order to efficiently infer the local latent representations of a document under DATM across all stochastic layers, we propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a Weibull distribution based stochastic downward generative model.

View Article and Find Full Text PDF

Automatic segmentation of medical images finds abundant applications in clinical studies. Computed Tomography (CT) imaging plays a critical role in diagnostic and surgical planning of craniomaxillofacial (CMF) surgeries as it shows clear bony structures. However, CT imaging poses radiation risks for the subjects being scanned.

View Article and Find Full Text PDF