Compositionally graded cylinders of Ti-Mn alloys were produced using the Laser Engineered Net Shaping (LENS™) technique, with Mn content varying from 0 to 12 wt.% along the cylinder axis. The cylinders were subjected to different post-build heat treatments to produce a large sample library of a-b microstructures.
View Article and Find Full Text PDFThe response of a composite material is the result of a complex interplay between the prevailing mechanics and the heterogenous structure at disparate spatial and temporal scales. Understanding and capturing the multiscale phenomena is critical for materials modeling and can be pursued both by physical simulation-based modeling as well as data-driven machine learning-based modeling. In this work, we build machine learning-based data models as surrogate models for approximating the microscale elastic response as a function of the material microstructure (also called the elastic localization linkage).
View Article and Find Full Text PDFIntegr Mater Manuf Innov
December 2015
There has been a growing recognition of the opportunities afforded by advanced data science and informatics approaches in addressing the computational demands of modeling and simulation of multiscale materials science phenomena. More specifically, the mining of microstructure-property relationships by various methods in machine learning and data mining opens exciting new opportunities that can potentially result in a fast and efficient material design. This work explores and presents multiple viable approaches for computationally efficient predictions of the microscale elastic strain fields in a three-dimensional (3-D) voxel-based microstructure volume element (MVE).
View Article and Find Full Text PDF