Aft1p is an iron-responsive transcriptional activator that plays a central role in the regulation of iron metabolism in Saccharomyces cerevisiae. Aft1p is regulated by accelerated nuclear export in the presence of iron, mediated by Msn5p. However, the transcriptional activity of Aft1p is suppressed under iron-replete conditions in the Δmsn5 strain, although Aft1p remains in the nucleus.
View Article and Find Full Text PDFFerritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by cells.
View Article and Find Full Text PDFThe SLC39A family of zinc transporters can be divided into four subfamilies (I, II, LIV-1, and gufA) in vertebrates, but studies of their functions have been restricted exclusively to members of subfamilies II and LIV-1. In this study, we characterized SLC39A9 (ZIP9), the only member of subfamily I in vertebrates. Confocal microscopy demonstrated that transiently expressed, HA-tagged human ZIP9 (hZIP9-HA) was localized to the trans-Golgi network regardless of zinc status.
View Article and Find Full Text PDFAft1p is an iron-responsive transcriptional activator that plays a central role in maintaining iron homeostasis in Saccharomyces cerevisiae. Aft1p is regulated primarily by iron-induced shuttling of the protein between the nucleus and cytoplasm, but its nuclear import is not regulated by iron. Here, we have shown that the nuclear export of Aft1p is promoted in the presence of iron and that Msn5p is the nuclear export receptor (exportin) for Aft1p.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
February 2006
ZIP (ZRT/IRT-like Protein) and CDF (Cation Diffusion Facilitator) are two large metal transporter families mainly transporting zinc into and out of the cytosol. Several ZIP and CDF transporters have been characterized in mammals and various model organisms, such as yeast, nematode, fruit fly, and zebrafish, and many candidate genes have been identified by genome projects. Unexpected functions of ZIP and CDF transporters have been recently reported in some model organisms, leading to major advances in our understanding of the functions of mammalian counterparts.
View Article and Find Full Text PDFMitochondria play a central role in the initiation of apoptosis, which is regulated by various factors such as ATP synthesis, reactive oxygen species, redox status, and outer membrane permeabilization. Disruption of chicken thioredoxin 2 (Trx2), a mitochondrial redox-regulating protein, results in apoptosis in DT40 cells. To investigate the mechanism of this apoptosis, we prepared transfectants expressing control (DT40-TRX2-/-), human thioredoxin 2 (TRX2) (DT40-hTRX2), or redox-inactive TRX2 (DT40-hTRX2CS) in conditional Trx2-deficient DT40 cells containing a tetracycline-repressible Trx2 gene.
View Article and Find Full Text PDFAccurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosome stability by performing genome-wide screens employing synthetic genetic array methodology.
View Article and Find Full Text PDFZinc is an essential component for the catalytic activity of numerous zinc-requiring enzymes. However, until recently little has been known about the molecules involved in the pathways required for supplying zinc to these enzymes. We showed recently (Suzuki, T.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, the iron-responsive transcription factor Aft1p plays a critical role in maintaining iron homeostasis. The activity of Aft1p is induced in response to iron starvation and as a consequence the expression of the iron-regulon is increased. We have shown previously that Aft1p is localized to the cytoplasm under iron-replete conditions but that it is localized to the nucleus under iron-depleted conditions.
View Article and Find Full Text PDFYeast are capable of modifying their metabolism in response to environmental changes. We investigated the activity of the oxygen-dependent high-affinity iron uptake system of Saccharomyces cerevisiae under conditions of heme depletion. We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon.
View Article and Find Full Text PDFThioredoxin-2 (Trx-2) is a mitochondria-specific member of the thioredoxin superfamily. Mitochondria have a crucial role in the signal transduction for apoptosis. To investigate the biological significance of Trx-2, we cloned chicken TRX-2 cDNA and generated clones of the conditional Trx-2-deficient cells using chicken B-cell line, DT40.
View Article and Find Full Text PDFIntracellular homeostasis for zinc is achieved through the coordinate regulation of specific transporters engaged in zinc influx, efflux, and intracellular compartmentalization. We have identified a novel mammalian zinc transporter, zinc transporter 5 (ZnT-5), by virtue of its similarity to ZRC1, a zinc transporter of Saccharomyces cerevisiae, a member of the cation diffusion facilitator family. Human ZnT-5 (hZnT-5) cDNA encodes a 765-amino acid protein with 15 predicted membrane-spanning domains.
View Article and Find Full Text PDFThe Aft1 transcription factor regulates the iron regulon in response to iron availability in Saccharomyces cerevisiae. Aft1 activates a battery of genes required for iron uptake under iron-starved conditions, whereas Aft1 function is inactivated under iron-replete conditions. Previously, we have shown that iron-regulated DNA binding by Aft1 is responsible for the controlled expression of target genes.
View Article and Find Full Text PDF