Pathological hyperphosphorylated tau is the principal component of paired helical filaments, a pathological hallmark of Alzheimer disease (AD) and a strong candidate for a neurotoxic role in AD and other neurodegenerative disorders. Here we show that heat shock protein 27 (Hsp27) preferentially binds pathological hyperphosphorylated tau and paired helical filaments tau directly but not non-phosphorylated tau. The formation of this complex altered the conformation of pathological hyperphosphorylated tau and reduced its concentration by facilitating its degradation and dephosphorylation.
View Article and Find Full Text PDFThe Cbl ubiquitin ligase has emerged as a negative regulator of receptor and non-receptor tyrosine kinases. Cbl is known to associate with the proto-oncogene product Vav, a hematopoietic-restricted Rac guanine nucleotide exchange factor, but the consequences of this interaction remain to be elucidated. Using immortalized T cell lines from Cbl(+/+) and Cbl(-/-) mice, and transfection analyses in 293T cells, we demonstrate that Vav undergoes Cbl-dependent ubiquitinylation under conditions that promote Cbl and Vav phosphorylation.
View Article and Find Full Text PDFMuch of the pathology of systemic lupus erythematosus (SLE) is caused by deposition of immune complexes (ICs) into various tissues, including renal glomeruli. Because clearance of ICs depends largely on early complement component C1q, homozygous C1q deficiency is a strong genetic risk factor in SLE, although it is rare in SLE patients overall. In this work we addressed the issue of whether genetic polymorphisms affecting C1q levels may predispose to SLE, using the (NZB x NZW)F(1) model.
View Article and Find Full Text PDF