Maximal sustained energy intake (SusEI) appears limited, but the factors imposing the limit are disputed. We studied reproductive performance in two lines of mice selected for high and low food intake (MH and ML, respectively), and known to have large differences in thermal conductance (29% higher in the MH line at 21°C). When these mice raised their natural litters, their metabolisable energy intake significantly increased over the first 13 days of lactation and then reached a plateau.
View Article and Find Full Text PDFLactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature.
View Article and Find Full Text PDFThe capacity of animals to dissipate heat may constrain sustained energy intake during lactation. We examined these constraints at peak lactation in MF1 mice that had ad libitum access to food, or that had to run a pre-set target on running wheels to obtain ad libitum access to food. The voluntary distance run decreased sharply during pregnancy and peak lactation.
View Article and Find Full Text PDFThe endocannabinoids have been recognized as an important system involved in the regulation of energy balance. Rimonabant (SR141716), a selective inverse agonist of cannabinoid receptor 1 (CB1), has been shown to cause weight loss. However, its suppressive impact on food intake is transient, indicating a likely additional effect on energy expenditure.
View Article and Find Full Text PDF