A machine-learning approach to draw landscape maps in a low-dimensional control-parameter space is examined through a case study of three-dimensional alignment control of the asymmetric-top molecule SO. As a minimal model, we consider the control by using a set of mutually orthogonal, linearly polarized laser pulses that are parameterized by the time delay and fluence ratio. The parameters are represented either by points in the parameter space or by time- and frequency-resolved spectra.
View Article and Find Full Text PDFThe local control theory has been extended to deal with nonlinear interactions, such as polarizability interaction, as well as a combination of dipole and polarizability interactions. We explain herein how to implement the developed pulse-design algorithm in a standard computer code that numerically integrates the Liouville equation and/or the Schrödinger equation without incurring additional high computational cost. Through a case study of the rotational dynamics control of crystalline orbital molecules, the effectiveness of the locally optimized control pulses is demonstrated by adopting four types of control objectives, namely, two types of state-selective excitation, alignment, and orientation control.
View Article and Find Full Text PDFWe apply nonlinear optimal control simulation to design a non-resonant control pulse that maximizes the probability of specified photodissociation of IBr by utilizing the non-resonant dynamic Stark effect in the presence of a predetermined pump pulse. The optimal pulses are always composed of several subpulses that increase the target probability considerably depending on the wavelength of the pump pulse. Focusing on the cases of high target probabilities, we systematically examine how the subpulses cooperate with each other on the basis of pulse-partitioning analyses.
View Article and Find Full Text PDFIn the B state of I2, strong-laser-induced interference (SLI) was recently observed in the population of each vibrational eigenstate within a wave packet, which was initially prepared by a pump pulse and then strongly modulated by an intense femtosecond near-infrared (NIR) laser pulse. It was suggested that the interference as a function of the time delay occurs between the eigenstate reached by Rayleigh scattering and that by Raman scattering. To verify this mechanism and further discuss its characteristics, we theoretically/numerically study the SLI by adopting a two-electronic-state model of I2.
View Article and Find Full Text PDFNonresonant optimal control simulation is applied to a CO molecule to design two-color phase-locked laser pulses (800 nm + 400 nm) with the aim of orienting the molecule under the field-free condition. The optimal pulse consists of two subpulses: the first subpulse aligns the molecule and the second one orients it. The molecular alignment induced by the first subpulse considerably enhances the degree of orientation, the value of which is close to an ideal value at temperature T = 0 K.
View Article and Find Full Text PDFWave functions of electrically neutral systems can be used as information carriers to replace real charges in the present Si-based circuit, whose further integration will result in a possible disaster where current leakage is unavoidable with insulators thinned to atomic levels. We have experimentally demonstrated a new logic gate based on the temporal evolution of a wave function. An optically tailored vibrational wave packet in the iodine molecule implements four- and eight-element discrete Fourier transform with arbitrary real and imaginary inputs.
View Article and Find Full Text PDFAlignment control of an ensemble of nonpolar molecules is numerically studied by means of optimal control simulation. A nitrogen molecule that is modeled by a quantum rigid rotor is adopted. Controlled rotational wave packets are created through nonresonant optical transitions induced by polarizability coupling.
View Article and Find Full Text PDFThe conical intersections of the dissociative 1pisigma* excited state with the lowest 1pipi* excited state and the electronic ground state of 9H-adenine have been investigated with multireference electronic structure calculations. Adiabatic and quasidiabatic potential energy surfaces and coupling elements were calculated as a function of the NH stretch coordinate of the azine group and the out-of-plane angle of the hydrogen atom, employing MultiReference Configuration-Interaction (MRCI) as well as Complete-Active-Space Self-Consistent-Field (CASSCF) methods. Characteristic properties of the 1pipi*-1pisigma* and 1pisigma*-S0 conical intersections, such as the diabatic-to-adiabatic mixing angle, the geometric phase of the adiabatic electronic wavefunctions, the derivative coupling, as well as adiabatic and diabatic transition dipole moment surfaces were investigated in detail.
View Article and Find Full Text PDFThe question as to whether state-selective population of molecular vibrational levels by shaped infrared laser pulses is possible in a condensed phase environment is of central importance for such diverse fields as time-resolved spectroscopy, quantum computing, or "vibrationally mediated chemistry." This question is addressed here for a model system, representing carbon monoxide adsorbed on a Cu(100) surface. Three of the six vibrational modes are considered explicitly, namely, the CO stretch vibration, the CO-surface vibration, and a frustrated translation.
View Article and Find Full Text PDFOptimal control simulation is used to examine the control mechanisms in the photodissociation of phenol within a two-dimensional, three-electronic-state model with two conical intersections. This model has two channels for H-atom elimination, which correspond to the (2)pi and (2)sigma states of the phenoxyl radical. The optimal pulse that enhances (2)sigma dissociation initially generates a wave packet on the S(1) potential-energy surface of phenol.
View Article and Find Full Text PDFWe numerically propose a way to perform quantum computations by combining an ensemble of molecular states and weak laser pulses. A logical input state is expressed as a superposition state (a wave packet) of molecular states, which is initially prepared by a designed femtosecond laser pulse. The free propagation of the wave packet for a specified time interval leads to the specified change in the relative phases among the molecular basis states, which corresponds to a computational result.
View Article and Find Full Text PDFOptimal control simulation is applied to the cis-trans photoisomerization of retinal in rhodopsin within a two-dimensional, two-electronic-state model with a conical intersection [S. Hahn and G. Stock, J.
View Article and Find Full Text PDF"Molecular motors or machines" are one of the hot subjects in chemistry because they play an important role in molecular devices. We have theoretically demonstrated that unidirectional rotations of a chiral molecular motor can be driven by using tailored linearly polarized laser pulses. The findings obtained here serve as a theoretical basis for control of functions such as gearing or acceleration of molecular motors.
View Article and Find Full Text PDFA linearized optimal control method in combination with mixed quantum/classical molecular dynamics simulation is used for numerically investigating the possibility of controlling photodissociation wave packets of I(2)(-) in water. Optimal pulses are designed using an ensemble of photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical results clearly show the effectiveness of the control although the control achievement is reduced with an increase in the internuclear distance associated with a target region.
View Article and Find Full Text PDFAn optimal control theory for open quantum systems is constructed containing non-Markovian dissipation manipulated by an external control field. The control theory is developed based on a novel quantum dissipation formulation that treats both the initial canonical ensemble and the subsequent reduced control dynamics. An associated scheme of backward propagation is presented, allowing the efficient evaluation of general optimal control problems.
View Article and Find Full Text PDFA wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence.
View Article and Find Full Text PDF