A new synthetic strategy for DNA-enzyme conjugates with a novel architecture was explored using a natural cross-linking catalyst, microbial transglutaminase (MTG). A glutamine-donor substrate peptide of MTG was introduced at the 5-position on the pyrimidine of deoxyuridine triphosphate to prepare a DNA strand with multiple glutamine-donor sites by polymerase chain reaction (PCR). A substrate peptide that contained an MTG-reactive lysine residue was fused to the N terminus of a thermostable alkaline phoshatase from Pyrococcus furiosus (PfuAP) by genetic engineering.
View Article and Find Full Text PDFThe factors affecting enzymatic protein immobilization with microbial transglutaminase (MTG) were explored. As model proteins, enhanced green fluorescent protein (EGFP) and glutathione S-transferase (GST) were chosen and tagged with a neutral Gln-donor substrate peptide for MTG (Leu-Leu-Gln-Gly, LLQG-tag) at their C-terminus. To create a specific surface, displaying reactive Lys residues, to be cross-linked with the Gln residue in the LLQG-tag of target proteins by MTG catalysis, a polystyrene surface was physically coated with beta-casein.
View Article and Find Full Text PDF