Publications by authors named "Yukio Nisimoto"

Nox4, a member of the NADPH- and oxygen-dependent oxidoreductases that generate reactive oxygen species (ROS), is widely expressed and constitutively active. To understand better its function and regulation, specific mutations in the Nox4 dehydrogenase (DH) domain were examined for effects on Nox4 oxidase activity. Transfection of His6-tagged Nox4 increased the amount of p22phox subunit in HEK293 cells, and a higher level of the heterodimer was observed in the nucleus-enriched fraction (NEF).

View Article and Find Full Text PDF

Nox4 is an oddity among members of the Nox family of NADPH oxidases [seven isoenzymes that generate reactive oxygen species (ROS) from molecular oxygen] in that it is constitutively active. All other Nox enzymes except for Nox4 require upstream activators, either calcium or organizer/activator subunits (p47(phox), NOXO1/p67(phox), and NOXA1). Nox4 may also be unusual as it reportedly releases hydrogen peroxide (H₂O₂) in contrast to Nox1-Nox3 and Nox5, which release superoxide, although this result is controversial in part because of possible membrane compartmentalization of superoxide, which may prevent detection.

View Article and Find Full Text PDF

NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM.

View Article and Find Full Text PDF

By targeting redox-sensitive amino acids in signaling proteins, the NADPH oxidase (Nox) family of enzymes link reactive oxygen species to physiological processes. We previously analyzed the sequences of 107 Nox enzymes and identified conserved regions that are predicted to have important functions in Nox structure or activation. One such region is the cytosolic B-loop, which in Nox1-4 contains a conserved polybasic region.

View Article and Find Full Text PDF

In the plasma membrane fraction from Caco-2 human colon carcinoma cells, active Nox1 (NADPH oxidase 1) endogenously co-localizes with its regulatory components p22(phox), NOXO1, NOXA1 and Rac1. NADPH-specific superoxide generating activity was reduced by 80% in the presence of either a flavoenzyme inhibitor DPI (diphenyleneiodonium) or NADP(+). The plasma membranes from PMA-stimulated cells showed an increased amount of Rac1 (19.

View Article and Find Full Text PDF

Antioxidant action of Rosmarinic acid (Ros A), a natural phenolic ingredient in many Lamiaceae herbs such as Perilla frutescens, sage, basil and mint, was analyzed in relation to the Ikappa-B activation in RAW264.7 macrophages. Ros A inhibited nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein synthesis induced by lipopolysaccharide (LPS), and also effectively suppressed phorbol 12-myristate 13-acetate (PMA)-induced superoxide production in RAW264.

View Article and Find Full Text PDF

A series of truncated forms of His(6)-tagged gp91phox were expressed, solubilized, and purified in the presence of 30 microM FAD. The truncated gp91phox with the longest sequence in the C-terminal region (221-570) (gp91C) showed the highest activity (turnover rate, 0.92) for NADPH diaphorase in the presence of either 0.

View Article and Find Full Text PDF

Undifferentiated human promyelocytic leukemia HL-60 cells show little or no superoxide production, but generate a very low O(2)(-) concentration upon incubation with all-trans-retinoic acid (ATRA). Its production reaches a maximum within 20 h, and thereafter is maintained at an almost constant level. The differentiated cells show phorbol 12-myristate 13-acetate (PMA)-stimulated NADPH oxidase activity consistent with the amount of gp91phox (phagocytic oxidase) expressed in the plasma membrane.

View Article and Find Full Text PDF