Background: To improve the clinical outcome of patients who suffered ischemic stroke, cerebral ischemia-reperfusion (I/R) injury is one of the major concerns that should be conquered. Inflammatory reactions are considered a major contributor to brain injury following cerebral ischemia, and I/R exacerbates these reactions. The aim of this study was to investigate the possible ameliorative effects of progranulin (PGRN) against I/R injury in mice.
View Article and Find Full Text PDFATP and hydrolysis products of ATP like adenosine regulate the chemotaxis of neutrophils by activating purinoceptors and adenosine receptors. The present study was designed to examine exogenous ATP, activation of purinoceptors, and activation of A(3) adenosine receptor as key steps in the signal cascades that control cell orientation and migration of rat neutrophils. One or more of those steps might be potential therapeutic targets for treatment of inflammatory diseases.
View Article and Find Full Text PDFBackground: We have previously reported that the decrease of the vertical occlusal dimension (VOD) led to heart failure and abnormalities in creatine phosphokinase (CPK) in guinea pigs. In the present study, we investigated the autonomic activity and the origin of the abnormality in CPK under different occlusal conditions.
Materials And Methods: Guinea pigs were separated into the following five groups: untreated control, reduced VOD, slit, restored VOD and increased VOD groups and compared for their electrocardiogram and heart rate fluctuations for two weeks using Fluclet, computer software.
Branching morphogenesis in murine submandibular glands (SMG) is regulated by growth factors, extracellular matrix (ECM) and many biological processes through interactions between the epithelium and the mesenchyme. MicroRNAs (miRNAs) are a set of small, non-protein-coding RNAs that regulate gene expression at the post-transcriptional level. We hypothesized that branching morphogenesis is partly regulated by miRNAs.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK)-mediated signal transduction pathways convert signals by extracellular stimulation into a variety of cellular functions. However, the roles of MAPKs in neutrophils are not well understood. To elucidate the temporal roles of p38MAPK during rat neutrophil activation stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), we examined the kinetics of this enzyme and the role of p38MAPK related to neutrophil functions (superoxide production and chemotaxis).
View Article and Find Full Text PDFMaterials And Methods: Seven high risk patients of lung cancer with brain metastasis to which BAI was done were examined. The standard systemic chemotherapy was not indicated in these cases due to the patients' systemic condition. BAI was performed using CDDP (40-80 mg/m2)+CPT-11 (40-60 mg/m2).
View Article and Find Full Text PDF