The use of 1.5-tesla (T) magnetic resonance (MR) imaging with a wide and simultaneously short bore enhances patient comfort compared with traditional 1.5-T MR imaging and is becoming increasingly available in stereotactic radiosurgery treatment planning.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
December 2013
Using a 2011 questionnaire, the Japanese Society of Radiological Technology conducted a nationwide survey on the exposure conditions in diagnostic radiography. The purpose of this study was to measure the entrance surface dose and absorbed dose for each organ dose and to calculate the effective dose using a human phantom with the 2011 exposure conditions. We estimated the patient exposure doses during skull (antero-posterior), chest (postero-anterior), abdomen (antero-posterior), and lumbar vertebrae (antero-posterior, left-right, and right-left) radiographs.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
July 2010
Purpose: To evaluate the technical quality and visibility of the biliary tree and pancreatic duct on magnetic resonance cholangiopancreatography (MRCP) images obtained with a single-breath-hold three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) sequence in several different slice thicknesses.
Materials And Methods: As a fundamental study, tubes of various inside diameters filled gadolinium solutions were acquired at 1.5 T in 3D-FRFSE.
Computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) provide complementary information for treatment planning in stereotactic radiosurgery. We evaluated the localization accuracy of MRI and PET compared with CT. Two kinds of phantoms applicable to the Leksell G stereotactic skull frame (Elekta, Tokyo) were developed.
View Article and Find Full Text PDF