Publications by authors named "Yukino Miyagi-Inoue"

Neryl diphosphate (C) synthase (NDPS1), a homodimeric soluble cis-prenyltransferase from tomato, contains four disulfide bonds, including two inter-subunit S-S bonds in the N-terminal region. Mutagenesis studies demonstrated that the S-S bond formation affects not only the stability of the dimer but also the catalytic efficiency of NDPS1. Structural polymorphs in the crystal structures of NDPS1 complexed with its substrate and substrate analog were identified by employing massive data collections and hierarchical clustering analysis.

View Article and Find Full Text PDF

Natural rubber of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity. The proteins HRT1, HRT2, and HRBP have been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes.

View Article and Find Full Text PDF

Most cis-prenyltransferases (cPTs) use all-trans-oligoprenyl diphosphate, such as (E,E)-farnesyl diphosphate (FPP, C ), but scarcely accept dimethylallyl diphosphate (DMAPP, C ), as an allylic diphosphate primer in consecutive cis-condensations of isopentenyl diphosphate. Consequently, naturally occurring cis-1,4-polyisoprenoids contain a few trans-isoprene units at their ω-end. However, some Solanum plants have distinct cPTs that primarily use DMAPP as a primer to synthesize all-cis-oligoprenyl diphosphates, such as neryl diphosphate (NPP, C ).

View Article and Find Full Text PDF

Natural rubber (NR) is synthesized by the rubber transferase (RTase) on rubber particles (RPs) in latex. Due to the heterogeneity of the RPs in latex, it is difficult to precisely characterize the RTase activity. In this study, we separated the RPs of Hevea brasiliensis with different particle size distributions, via stepwise centrifugations.

View Article and Find Full Text PDF

The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway.

View Article and Find Full Text PDF

Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the -prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently.

View Article and Find Full Text PDF