Objective: To investigate whether blastocysts that divide irregularly reduce subsequent blastocyst euploidy.
Design: Retrospective study.
Setting: Private clinic.
Research Question: Can artificial intelligence (AI) improve the prediction of live births based on embryo images?
Design: The AI system was created by using the Attention Branch Network associated with deep learning to predict the probability of live birth from 141,444 images recorded by time-lapse imaging of 470 transferred embryos, of which 91 resulted in live birth and 379 resulted in non-live birth that included implantation failure, biochemical pregnancy and clinical miscarriage. The possibility that the calculated confidence scores of each embryo and the focused areas visualized in each embryo image can help predict subsequent live birth was examined.
Results: The AI system for the first time successfully visualized embryo features in focused areas that had potential to distinguish between live and non-live births.
The two main molecular species of sialic acid existing in nature are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Neu5Ac is abundant in mammalian brains and plays crucial roles in many neural functions. In contrast, Neu5Gc is present only at a trace level in vertebrate brains.
View Article and Find Full Text PDFInfluenza virus is rich in variation and mutations. It would be very convenient for virus detection and isolation to histochemically detect viral infection regardless of variation and mutations. Here, we established a histochemical imaging assay for influenza virus sialidase activity in living cells by using a new fluorescent sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac).
View Article and Find Full Text PDFEthanol extract of Pleurotus eryngii (DC.) QUÉL has estrogen-like activities that protect against bone loss caused by estrogen deficiency. In the present study, we investigated the effect of P.
View Article and Find Full Text PDFIn a comparison of sialidase activities toward N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), we found that Salmonella typhimurium LT2 sialidase (STSA) hardly cleaved 4-methylumbelliferyl Neu5Gc (4MU-Neu5Gc). The k cat/K m value of STSA for 4MU-Neu5Gc was found to be 110 times lower than that for 4-methylumbelliferyl Neu5Ac (4MU-Neu5Ac). Additionally, STSA had remarkably weak ability to cleave α2-3-linked-Neu5Gc contained in gangliosides and equine erythrocytes.
View Article and Find Full Text PDF