Atmosphere-ocean coupling effect on the frequency distribution of tropical cyclones (TCs) and its future change is studied using an atmosphere and ocean coupled general circulation model (AOGCM). In the present climate simulation, the atmosphere-ocean coupling in the AOGCM improves biases in the AGCM such as the poleward shift of the maximum of intense TC distribution in the Northern Hemisphere and too many intense TCs in the Southern Hemisphere. Particularly, subsurface cold water plays a key role to reduce these AGCM biases of intense TC distribution.
View Article and Find Full Text PDFThe mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought.
View Article and Find Full Text PDF