Objective: Effect of gut dysbiosis on fatty acid (FA) linked 3β-hydroxy-bile acid esters (FA-isoBAs) formation is currently unknown. This study aimed to investigate the profile of FA-isoBAs in fecal samples from pediatric patients with ulcerative colitis (UC).
Methods: Fecal samples were collected from seven pediatric patients diagnosed with UC and seven age-matched healthy controls.
Farnesoid X receptor (FXR) is a nuclear receptor that regulates the synthesis and enterohepatic circulation of bile acids (BAs). It also regulates lipid and carbohydrate metabolism, making FXR ligands potential therapeutic agents for systemic and/or hepatic metabolic disorders. We previously synthesized a series of FXR antagonists and showed that oral administration of FLG249 reduced the expression of several FXR target genes in the mouse ileum.
View Article and Find Full Text PDFAlthough introns are typically tens to thousands of nucleotides, there are notable exceptions. In flies as well as humans, a small number of genes contain introns that are more than 1000 times larger than typical introns, exceeding hundreds of kilobases (kb) to megabases (Mb). It remains unknown why gigantic introns exist and how cells overcome the challenges associated with their transcription and RNA processing.
View Article and Find Full Text PDFRibosomal DNA (rDNA), which encodes ribosomal RNA, is an essential but unstable genomic element due to its tandemly repeated nature. rDNA's repetitive nature causes spontaneous intrachromatid recombination, leading to copy number (CN) reduction, which must be counteracted by a mechanism that recovers CN to sustain cells' viability. Akin to telomere maintenance, rDNA maintenance is particularly important in cell types that proliferate for an extended time period, most notably in the germline that passes the genome through generations.
View Article and Find Full Text PDFSpecies' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges.
View Article and Find Full Text PDFPreserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in , which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
Ribosomal DNA (rDNA) encodes ribosomal RNA and exists as tandem repeats of hundreds of copies in the eukaryotic genome to meet the high demand of ribosome biogenesis. Tandemly repeated DNA elements are inherently unstable; thus, mechanisms must exist to maintain rDNA copy number (CN), in particular in the germline that continues through generations. A phenomenon called rDNA magnification was discovered over 50 y ago in Drosophila as a process that recovers the rDNA CN on chromosomes that harbor minimal CN.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2024
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome.
View Article and Find Full Text PDFIn animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance.
View Article and Find Full Text PDFGerm cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality.
View Article and Find Full Text PDFRibosomal DNA (rDNA) loci contain hundreds of tandemly repeated copies of ribosomal RNA genes needed to support cellular viability. This repetitiveness makes it highly susceptible to copy number (CN) loss due to intrachromatid recombination between rDNA copies, threatening multigenerational maintenance of rDNA. How this threat is counteracted to avoid extinction of the lineage has remained unclear.
View Article and Find Full Text PDFResearchers have used RNA in situ hybridization to detect the presence of RNA in cells and tissues for approximately 50 years. The recent development of a method capable of visualizing a single RNA molecule by utilizing tiled fluorescently labeled oligonucleotide probes that together produce a diffraction-limited spot has greatly increased the resolution of this technique, allowing for the precise determination of subcellular RNA localization and relative abundance. Here, we present our method for single molecule RNA fluorescence in situ hybridization (smFISH) in whole mount Drosophila testes and discuss how we have utilized this method to better understand the expression pattern of the highly unusual Y-linked genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
Across species, sperm maturation involves the dramatic reconfiguration of chromatin into highly compact nuclei that enhance hydrodynamic ability and ensure paternal genomic integrity. This process is mediated by the replacement of histones by sperm nuclear basic proteins, also referred to as protamines. In humans, a carefully balanced dosage between two known protamine genes is required for optimal fertility.
View Article and Find Full Text PDFFarnesoid X receptor (FXR) and peroxisome proliferator-activated receptor (PPAR)γ are nuclear receptor 1 superfamily of transcription factors. FXR and PPARγ agonists have been individually investigated in clinical trial of anti-diabetic agents in the patients with nonalcoholic fatty liver disease (NAFLD). Regarding recent agonist development, the partial agonists for FXR and PPARγ are drawing attention from the standpoint of avoiding overactive responses caused by full agonists.
View Article and Find Full Text PDFFrom insects to mammals, oocytes and sperm develop within germline cysts comprising cells connected by intercellular bridges (ICBs). In numerous insects, formation of the cyst is accompanied by growth of the fusome-a membranous organelle that permeates the cyst. Fusome composition and function are best understood in Drosophila melanogaster: during oogenesis, the fusome dictates cyst topology and size and facilitates oocyte selection, while during spermatogenesis, the fusome synchronizes the cyst's response to DNA damage.
View Article and Find Full Text PDFProper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells.
View Article and Find Full Text PDFKaryotype refers to the configuration of the genome into a set of chromosomes. The karyotype difference between species is expected to impede various biological processes, such as chromosome segregation and meiotic chromosome pairing, potentially contributing to incompatibility. Karyotypes can rapidly change between closely related species and even among populations of the same species.
View Article and Find Full Text PDFAlthough considered to be exact copies of each other, sister chromatids can segregate nonrandomly in some cases. For example, sister chromatids of the X and Y chromosomes segregate nonrandomly during asymmetric division of male germline stem cells (GSCs) in . Here, we demonstrate that the ribosomal DNA (rDNA) loci, which are located on the X and Y chromosomes, and an rDNA binding protein Indra are required for nonrandom sister chromatid segregation (NRSS).
View Article and Find Full Text PDFSatellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism.
View Article and Find Full Text PDFBackground: Despite its decreased incidence in Japan, gastric cancer continues among the leading causes of cancer-related deaths in both men and women. Accordingly, efforts are still required to lower the mortality rate of gastric cancer in Japan. Maebashi City introduced endoscopic gastric cancer screening in 2004, and participants are able to choose between direct radiography and endoscopy.
View Article and Find Full Text PDFStem cell niches are well-characterized factories of signaling information, but niche cells themselves also rely on their neighbors for fate maintenance. In this issue of Developmental Cell, Herrera et al. reveal bi-directional communication between Drosophila testis niche "hub" cells and somatic cyst stem cells.
View Article and Find Full Text PDFAlthough rapid evolution of pericentromeric satellite DNA repeats is theorized to promote hybrid incompatibility (HI) (Yunis and Yasmineh 1971; Henikoff et al. 2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan and Yamashita 2017), how divergent repeats affect hybrid cells remains poorly understood. Recently, we demonstrated that sequence-specific DNA-binding proteins cluster satellite DNA from multiple chromosomes into "chromocenters," thereby bundling chromosomes to maintain the entire genome in a single nucleus (Jagannathan et al.
View Article and Find Full Text PDF