Aims: Epigenetic signatures of germline cells are dynamically reprogrammed to induce appropriate differentiation, development and sex specification. We investigated sex-specific epigenetic changes in mouse fetal germ cells (FGCs) and neonatal germ cells.
Materials & Methods: Six histone marks in mouse E13.
The fertility of sex-reversed XY female mice is severely impaired by a massive loss of oocytes and failure of meiotic progression. This phenomenon remains an outstanding mystery. We sought to determine the molecular etiology of XY oocyte dysfunction by generating sex-reversed females that bear genetic ablation of Sry, a vital sex determination gene, on an inbred C57BL/6 background.
View Article and Find Full Text PDFIn mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively.
View Article and Find Full Text PDFThe distal region of mouse chromosome 12 harbors the Dlk1-Dio3 domain, is essential for normal development and encodes maternally expressed noncoding RNAs (ncRNAs), including Gtl2 as well as paternally expressed proteins.Gtl2 works as a tumor suppressor in several types of human cancer cell lines; however, whether this reflects its function in vivo is unknown. Deleting Gtl2 from the maternal allele (Gtl2((-/+))) results in loss of expression of Gtl2 and decreased expression of downstream ncRNAs, including many miRNAs.
View Article and Find Full Text PDFFour expression plasmids for recombinant human aryl hydrocarbon receptor (hAhR) consisting of a ligand binding domain of hAhR, a DNA-binding domain of LexA and a transactivation domain of VP16 as well as β-glucuronidase (GUS) reporter genes were constructed. All the expression plasmids were transformed into tobacco plants. The selected transgenic tobacco plants were used to assay.
View Article and Find Full Text PDFLimb-girdle muscular dystrophy type 2A (LGMD2A) is a genetic disease that is caused by mutations in the calpain 3 gene (CAPN3), which encodes the skeletal muscle-specific calpain, calpain 3 (also known as p94). However, the precise mechanism by which p94 functions in the pathogenesis of this disease remains unclear. Here, using p94 knockin mice (termed herein p94KI mice) in which endogenous p94 was replaced with a proteolytically inactive but structurally intact p94:C129S mutant protein, we have demonstrated that stretch-dependent p94 distribution in sarcomeres plays a crucial role in the pathogenesis of LGMD2A.
View Article and Find Full Text PDFp94/calpain 3 is a Ca(2+)-binding intracellular protease predominantly expressed in skeletal muscles. p94 binds to the N2A and M-line regions of connectin/titin and localizes in the Z-bands. Genetic evidence showing that compromised p94 proteolytic activity leads to muscular dystrophy (limb-girdle muscular dystrophy type 2A) indicates the importance of p94 function in myofibrils.
View Article and Find Full Text PDFp94/calpain 3 is a skeletal muscle-specific member of the Ca(2+)-regulated cytosolic cysteine protease family, the calpains. Defective p94 protease activity originating from gene mutations causes a muscular dystrophy called calpainopathy, indicating the indispensability of p94 for muscle survival. Because of the existence of the p94-specific regions IS1 and IS2, p94 undergoes very rapid and exhaustive autolysis.
View Article and Find Full Text PDFVariation in the calpain 10 gene has recently been shown to be associated with type 2 diabetes by positional cloning. Since then, studies on calpain 10 have been started in correlation with diabetes and insulin-mediated signaling. In this review, the activation mechanism of calpain by calcium ions, which is essential to understand its physiological functions, is discussed on the basis of recent X-ray structural analyses.
View Article and Find Full Text PDFThere are two classes of an intracellular 'modulator protease', calpain: ubiquitous and tissue-specific. p94/calpain 3 is an example of the latter, predominantly expressed in muscle. A defect in the p94 gene causes muscular dystrophy.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
July 2003
Calpain, a Ca(2+)-requiring cytoplasmic cysteine protease, plays indispensable roles in various cellular functions such as signal transduction, cell growth and differentiation, apoptosis, necrosis, and so on. Although most of the detailed physiological functions of calpains have not yet been elucidated, the importance of calpain is obvious from the increasing numbers of papers describing relationships between human disease states (such as Alzheimer's disease, cataract, and muscular dystrophies) and malfunction of calpain. One of the recent remarkable topics of calpain is that a single nucleotide polymorphism of CAPN10, the gene for calpain 10, is related to type 2 diabetes.
View Article and Find Full Text PDF