J Biol Chem
October 2013
Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-β (IFN-β), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation.
View Article and Find Full Text PDFThis report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the following three expression profiling data sets: adipocyte differentiation of mouse stromal cells (ST2 cells), adipose tissues from obesity mice, and siRNA-mediated knockdown of Pparγ using ST2 cells. Fam57b consists of three variants expressed from different promoters and contains a Tram-Lag1-CLN8 domain that is related to ceramide synthase.
View Article and Find Full Text PDFExcessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
Although various microRNAs regulate cell differentiation and proliferation, no miRNA has been reported so far to play an important role in the regulation of osteoblast differentiation. Here we describe the role of miR-125b in osteoblastic differentiation in mouse mesenchymal stem cells, ST2, by regulating cell proliferation. The expression of miR-125b was time-dependently increased in ST2 cells, and the increase in miR-125b expression was attenuated in osteoblastic-differentiated ST2 cells induced by BMP-4.
View Article and Find Full Text PDF(5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) and antidiabetic agent as has been previously reported. As PPARgamma agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages.
View Article and Find Full Text PDF