The catalytic activity of chiral binaphthyldiimine (BINIM)-Ni(II) complexes for asymmetric enantioselective diazoalkane cycloadditions of ethyl diazoacetate with 3-acryloyl-2-oxazolidinone and 2-(2-alkenoyl)-3-pyrazolidinone derivatives was evaluated. The cycloadditions of 3-acryloyl-2-oxazolidinone and its 5,5-dimethyl derivative, in the presence of the BINIM-Ni(II) complex (10 mol %; prepared from (R)-BINIM-4Ph-2QN (ligand C) and Ni(ClO(4))(2)·6H(2)O) afforded 2-pyrazolines having a methine carbon substituted with an oxazolidinonyl group in moderate ratios (70:30 to 72:28), along with high enantioselectivities (90-92% ee) via 1,3-proton migration. On the basis of the investigations on the counteranions of the Ni(II) complex, the N-substituent of pyrazolidinone, and reaction temperatures, the optimal enantioselectivity (97% ee) and ratio (85:15) of 2-pyrazoline were obtained for the reaction of 2-acryloyl-1-benzyl-5,5-dimethyl-3-pyrazolidinone in the presence of (R)-BINIM-4Ph-2QN-Ni(II) ((R)-C/Ni(II)) complex prepared using Ni(BF(4))(2)·6H(2)O.
View Article and Find Full Text PDFIncubation of a cell-sized lipid membrane vesicle (giant vesicle, GV) in a diluted aqueous solution of neutral phosphate buffer salts or glucose transformed the GV to an oligovesicular vesicle (OVV) that encapsulates one or more smaller GVs. During the incubation, the membrane of flaccid vesicle invaginated and closed to form the inner vesicle of an OVV engulfing a part of the bulk aqueous phase. Using the GV-to-OVV transformation, an OVV that has different aqueous contents in each membranous microcompartment was constructed.
View Article and Find Full Text PDFElectroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs), from egg yolk phosphatidylcholine, was examined varying the shape of the counter electrode. Instead of a planar ITO (indium tin oxide) electrode commonly used, platinum wire mesh was employed as a counter electrode facing lipid deposit on a planar formation electrode. The modification did not significantly alter GV formation, and many GVs of 30-50 µm, some as large as 100 µm, formed as with the standard setup, indicating that a counter electrode does not have to be a complete plane.
View Article and Find Full Text PDFCell-sized lipid bilayer membrane vesicles (giant vesicles, GVs) or semi-vesicles were formed from egg yolk phosphatidylcholine on a platinum electrode under applied electric voltage by electroformation. Micromanipulation of the semi-vesicle by first pressing its membrane with a glass microneedle and then withdrawing the needle left a GV in the interior of the vesicle. During the process, an aqueous solution of Ficoll that filled the needle was introduced into the newly formed inner vesicle and remained encapsulated.
View Article and Find Full Text PDFElectroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine under applied electric voltage was examined on a substrate of a polymer mesh placed between two planar indium tin oxide coated glass electrodes. Under appropriate conditions, GVs were formed in good yield on meshes of various polymer materials, namely, hydrophobic poly(propylene), poly(ethylene terephthalate), a carbon fiber/nylon composite, and relatively hydrophilic nylon. Arranging threads in a mesh structure with appropriate openings improved GV formation compared to simply increasing the number of threads.
View Article and Find Full Text PDFElectroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine was examined using a poly(ethylene terephthalate) sheet coated with indium tin oxide (ITO-PET) as the electrode material. With sinusoidal ac voltage, GV formation occurred in a similar manner to that on an ITO-glass electrode widely used in electroformation. Difference in the specific electrical resistance of ITO-PET did not significantly affect electroformation.
View Article and Find Full Text PDFThe alkaline treatment of the pyridinium salts, readily available from the S-alkylations of 3-amino-4-(1-pyridinio)thiophene-5-thiolates with various alkyl halides, in chloroform at room temperature afforded the corresponding thieno[3',4':4,5]imidazo[1,2-a]pyridine derivatives in low to moderate yields via the intramolecular cyclization of the resulting 1,5-dipoles followed by the aromatization of the primary cycloadducts. Interestingly, the reactions using unsymmetrical 3-amino-4-[1-(3-methylpyridinio)]thiophene-5-thiolates afforded only 8-methylthieno[3',4':4,5]imidazo[1,2-a]pyridines and the other 6-methyl derivatives were not formed at all. In addition the isolation of a byproduct in the condensation reaction of pyridinium salt with the solvent (CHCl₃) is also discussed.
View Article and Find Full Text PDFThe alkaline treatment and dehydrogenation of pyridinium salts, formed from the S-alkylations of 3-(1-pyridinio)thiophene-2-thiolates with alpha,alpha-dibromo-o-, m-, or p-xylene, provided the corresponding alpha,alpha'-bis[(thieno[3,4-b]indolizin-3-yl)thio]-o-, m-, and p-xylene derivatives in low to good yields. Both (1)H-NMR and UV-Vis spectra of these products supported distinctly the predominance of the gauche-gauche conformation in relation to the two sulfide linkages as the spacer in these molecules. On the other hand, the X-ray analyses indicated the expected gauche-gauche conformation for the m- and the p-xylene derivatives, but the anti-anti one for the o-xylene derivative.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2007
Immobilization of liposomal phospholipids onto Sephacryl S-1000 gels that were chemically conjugated with hydrophobic alkyl moieties, octyl, dodecyl and hexadecyl, was examined in batch mode interaction. Compared with the octyl gel, the dodecyl and the hexadecyl gels were found to immobilize the three to four times more phospholipids with the less hydrophobic moieties. The encapsulation of a water-soluble marker, with other evidences, suggests that the majority of the immobilized phospholipids maintained liposomal morphology.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2007
Relocation of a glycosylphosphatidylinositol (GPI)-anchored protein acetylcholinesterase (AChE) in its enzymatically active form from proteovesicles containing human erythrocyte ghost membrane proteins onto a liposome-gel conjugate was examined. Liposomes of 1,2-dimyristoylphosphatidylcholine (DMPC) were immobilized on Sephacryl S-1000 gel that was chemically modified to bear hydrophobic octyl moieties. Upon coincubation of the liposome-gel conjugate with freely suspended proteovesicles prepared from erythrocyte ghosts, 50% of the AChE left the proteovesicles and immobilized onto the liposome-gel conjugate in 18 h.
View Article and Find Full Text PDFThe physical properties of hydrated multilamellar sample of 1,2-dimyristamido-1,2-deoxyphosphatidylcholine (DDPC) were investigated by means of differential scanning calorimetry (DSC), static X-ray diffraction, and simultaneous DSC and X-ray diffraction. The DDPC is a synthetic sphingomyelin analogue and has two amide bonds in its hydrophobic parts. This paper reports on metastable phase behavior of the hydrated DDPC sample.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2004
Immobilization of liposomes on hydrophobized Sephacryl gel and controlled detachment of the liposomes from the gel were examined. The gel was chemically modified and bore octyl, hexadecyl or cholesteryl moiety via disulfide linkage as anchors to liposomal bilayer membrane. Upon interaction with the gel, egg phosphatidylcholine liposomes were successfully immobilized onto the gel.
View Article and Find Full Text PDF