Publications by authors named "Yukihiro Kabeya"

Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V.

View Article and Find Full Text PDF

Circadian rhythms of cell division have been observed in several lineages of eukaryotes, especially photosynthetic unicellular eukaryotes. However, the mechanism underlying the circadian regulation of the cell cycle and the nature of the advantage conferred remain unknown. Here, using the unicellular red alga Cyanidioschyzon merolae, we show that the G1/S regulator RBR-E2F-DP complex links the G1/S transition to circadian rhythms.

View Article and Find Full Text PDF

Background: Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained over time by chloroplast division, a process which is performed by the constriction of a ring-like division complex at the division site. The division complex has retained certain components of the cyanobacterial division complex, which function inside the chloroplast. It also contains components developed by the host cell, which function outside of the chloroplast and are believed to generate constrictive force from the cytosolic side, at least in red algae and Viridiplantae.

View Article and Find Full Text PDF

Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division. In algal cells, chloroplast division is regulated by the cell cycle so as to occur only once, in the S phase. Chloroplasts possess multiple copies of their own genome that must be replicated during chloroplast proliferation.

View Article and Find Full Text PDF

Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll.

View Article and Find Full Text PDF

Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle.

View Article and Find Full Text PDF

Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes.

View Article and Find Full Text PDF

Chloroplasts have evolved from a cyanobacterial endosymbiont and have been retained in eukaryotic cells for more than one billion years via chloroplast division and inheritance by daughter cells during cell division. Recent studies revealed that chloroplast division is performed by a large protein complex at the division site, encompassing both the inside and the outside of the two envelope membranes. The division complex has retained a few components of the cyanobacterial division complex to go along with other components supplied by the host cell.

View Article and Find Full Text PDF

Background: Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts.

View Article and Find Full Text PDF

Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae.

View Article and Find Full Text PDF

Chloroplasts are descended from a cyanobacterial endosymbiont and divide by binary fission. Reminiscent of the process in their bacterial ancestor, chloroplast division involves a part of cyanobacteria-derived division machineries in addition to those acquired during chloroplast evolution.1,2 In both bacterial and chloroplast division, formation of the FtsZ ring at the mid position is required for subsequent constriction and fission at the mid division site.

View Article and Find Full Text PDF

In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant-specific components of the division apparatus, determine the rate of chloroplast division.

View Article and Find Full Text PDF

Chloroplasts evolved from a cyanobacterial endosymbiont, and chloroplast division requires the formation of an FtsZ division ring, which is descended from the cytokinetic machinery of cyanobacteria. As in bacteria, the positioning of the chloroplast FtsZ ring is regulated by the proteins MinD and MinE. However, chloroplast division also involves mechanisms invented by the eukaryotic host cell.

View Article and Find Full Text PDF

In general, in higher plants, the core subunits of a bacterial-type plastid-encoded RNA polymerase (PEP) are encoded by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes. However, an rpoA gene is absent from the moss Physcomitrella patens plastid genome, although the PpRpoA gene (renamed PpRpoA1) nuclear counterpart is present in the nuclear genome. In this study, we identified and characterized a second gene encoding the plastid-targeting alpha subunit (PpRpoA2).

View Article and Find Full Text PDF

The phylogenetic positions of bryophytes and charophytes, together with their genome features, are important for understanding early land plant evolution. Here we report the complete nucleotide sequence (105,340 bp) of the circular-mapping mitochondrial DNA of the moss Physcomitrella patens. Available evidence suggests that the multipartite structure of the mitochondrial genome in flowering plants does not occur in Physcomitrella.

View Article and Find Full Text PDF

The nuclear genome of the moss Physcomitrella patens contains two genes encoding phage-type RNA polymerases (PpRPOT1 and PpRPOT2). Each of the PpRPOT1 and PpRPOT2 transcripts possesses two in-frame AUG codons at the 5' terminus that could act as a translational initiation site. Observation of transient and stable Physcomitrella transformants expressing the 5' terminus of each PpRPOT cDNA fused with the green fluorescent protein gene suggested that both PpRPOT1 and PpRPOT2 are not translated from the first (upstream) AUG codon in the natural context but translated from the second (downstream) one, and that these enzymes are targeted only to mitochondria, although they are potentially targeted to plastids when translation is forced to start from the first AUG codon.

View Article and Find Full Text PDF

Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.

View Article and Find Full Text PDF

We isolated three cDNAs for the genes PpGRP1, PpGRP2 and PpGRP3 that encode glycine-rich RNA-binding proteins (GRPs) from Physcomitrella patens. Three full-length cDNA clones were isolated from a cDNA library prepared from poly(A)(+) RNA from 7-day-old protonemata of P. patens.

View Article and Find Full Text PDF

The plastid is a semiautonomous organelle essential in photosynthesis and other metabolic activities of plants and algae. Plastid DNA is organized into the nucleoid with various proteins and RNA, and the nucleoid is subject to dynamic changes during the development of plant cells. Characterization of the major DNA-binding proteins of nucleoids revealed essential differences in the two lineages of photosynthetic eukaryotes, namely nucleoids of green plants contain sulfite reductase as a major DNA-binding protein that represses the genomic activity, whereas the prokaryotic DNA-binding protein HU is abundant in plastid nucleoids of the rhodophyte lineage.

View Article and Find Full Text PDF

We isolated two cDNAs for the genes PpRPOT1 and PpRPOT2 that encode phage-type RNA polymerases (RPOTs) from Physcomitrella patens. Transcriptional activity of the encoded proteins was demonstrated by an in vitro transcription assay. Transiently expressed RPOT green fluorescent protein fusion proteins were both targeted to mitochondria.

View Article and Find Full Text PDF