Ozoralizumab is a bispecific NANOBODY compound that binds tumor necrosis factor alpha (TNFα) and human serum albumin. Ozoralizumab inhibits the TNFα physiological activity while maintaining long-term plasma retention owing to its human serum albumin-binding ability. A population pharmacokinetic (PK) model was developed using data from 494 Japanese patients with rheumatoid arthritis in Phase II/III and Phase III trials to assess the effects of potential PK covariates.
View Article and Find Full Text PDFIntroduction: Ozoralizumab (OZR), a tumor necrosis factor alpha (TNFα) inhibitor, is a NANOBODY compound that binds to TNFα and human serum albumin. The main objective of this study was to analyze the pharmacokinetics (PK) of the drug and its correlation with clinical efficacy in patients with rheumatoid arthritis (RA).
Methods: Efficacy data were analyzed from the OHZORA trial, in which OZR 30 or 80 mg was administered to Japanese patients with RA at 4-week intervals for 52 weeks in combination with methotrexate (MTX; n = 381), and the NATSUZORA trial, in which OZR 30 or 80 mg was administered without concomitant MTX (n = 140).
Although sodium-glucose cotransporter 2 (SGLT2) inhibitors lower serum uric acid, their long-term effect on uric acid metabolism is not well understood. We analyzed pooled data from studies wherein patients with type 2 diabetes mellitus received luseogliflozin, an SGLT2 inhibitor. Upon stratifying patients by baseline glycated hemoglobin (HbA ) or serum uric acid, lower HbA or higher serum uric acid level was associated with a greater reduction in serum uric acid after treatment.
View Article and Find Full Text PDF1. To understand the clearance mechanism of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, we investigated its human metabolite profile and metabolic enzymes responsible for the primary metabolic pathways in human using reaction phenotyping. 2.
View Article and Find Full Text PDF1. We evaluated potential in vitro drug interactions of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, mediated by CYP inhibition, CYP induction and drug transporters using human liver microsomes, primary hepatocytes and recombinant cells-expressing efflux or uptake transporters, respectively. 2.
View Article and Find Full Text PDF1. We investigated the metabolism and disposition of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, in rats and dogs, as well as in vitro metabolism in rats, dogs and humans. In addition, we studied its localization in the rat kidney.
View Article and Find Full Text PDFSodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UE(UA)) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UE(UA), suggesting that SUA decreased as a result of the increase in the UE(UA).
View Article and Find Full Text PDFJ Med Chem
April 2010
Derivatives of a novel scaffold, C-phenyl 1-thio-D-glucitol, were prepared and evaluated for sodium-dependent glucose cotransporter (SGLT) 2 and SGLT1 inhibition activities. Optimization of substituents on the aromatic rings afforded five compounds with potent and selective SGLT2 inhibition activities. The compounds were evaluated for in vitro human metabolic stability, human serum protein binding (SPB), and Caco-2 permeability.
View Article and Find Full Text PDF