We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered , a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
The demand for raspberry ketone (RK) as a plant-based natural flavoring agent is high, but natural RK is one of the most expensive flavor compounds due to its limited content in plants. Here, we produced RK from simple carbon sources in We genetically engineered metabolism to overproduce the metabolic precursors tyrosine and -coumaric acid and increase RK production. The engineered produced 19.
View Article and Find Full Text PDFK20 is a novel amphiphilic aminoglycoside capable of inhibiting many fungal species. K20's capabilities to inhibit Fusarium graminearum the causal agent wheat Fusarium head blight (FHB) and to this disease were examined. K20 inhibited the growth of F.
View Article and Find Full Text PDFThe actinobacterium splits riboflavin (vitamin B) into lumichrome and d-ribose. However, such degradation by other bacteria and the involvement of a two-component flavin-dependent monooxygenase (FMO) in the reaction remain unknown. Here we investigated the mechanism of riboflavin degradation by the riboflavin-assimilating alphaproteobacterium (formerly ).
View Article and Find Full Text PDFCarbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2018
Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,β-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA).
View Article and Find Full Text PDFA series of synthetic dimeric cationic anthraquinone analogs (CAAs) with potent antimicrobial activities against a broad range of fungi and bacteria were developed. These compounds were prepared in 2-3 steps with high overall yield and possess alkyl chain, azole, quinone, and quaternary ammonium complexes (QACs). In vitro biological evaluations reveal prominent inhibitory activities of lead compounds against several drug-susceptible and drug-resistant fungal and bacterial strains, including MRSA, VRE, Candida albicans and Aspergillus flavus.
View Article and Find Full Text PDFA concise and novel method for site-selective alkylation of 1,3,6',3″-tetraazidokanamycin has been developed that leads to the divergent synthesis of three classes of kanamycin A derivatives. These new amphiphilic kanamycin derivatives bearing alkyl chains length of 4, 6, 7, 8, 9, 10, 12, 14, and 16 have been tested for their antibacterial and antifungal activities. The antibacterial effect of the synthesized kanamycin derivatives declines or disappears as compared to the original kanamycin A.
View Article and Find Full Text PDFNovel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized.
View Article and Find Full Text PDFBackground: Biliverdin IXα is produced when heme undergoes reductive ring cleavage at the α-methene bridge catalyzed by heme oxygenase. It is subsequently reduced by biliverdin reductase to bilirubin IXα which is a potent endogenous antioxidant. Biliverdin IXα, through interaction with biliverdin reductase, also initiates signaling pathways leading to anti-inflammatory responses and suppression of cellular pro-inflammatory events.
View Article and Find Full Text PDFMany Actinomycetes aminoglycosides are widely used antibiotics. Although mainly antibacterials, a few known aminoglycosides also inhibit yeasts, protozoans and important crop pathogenic fungal oomycetes. Here we show that attachment of a C8 alkyl chain to ring III of a neamine-based aminoglycoside specifically at the 4″-o position yields a broad-spectrum fungicide (FG08) without the antibacterial properties typical for aminoglycosides.
View Article and Find Full Text PDF