Publications by authors named "Yukie Akune"

Dynamic changes in protein glycosylation impact human health and disease progression. However, current resources that capture disease and phenotype information focus primarily on the macromolecules within the central dogma of molecular biology (DNA, RNA, proteins). To gain a better understanding of organisms, there is a need to capture the functional impact of glycans and glycosylation on biological processes.

View Article and Find Full Text PDF

Glycan microarrays are essential tools in glycobiology and are being widely used for assignment of glycan ligands in diverse glycan recognition systems. We have developed a new software, called Carbohydrate microArray Analysis and Reporting Tool (CarbArrayART), to address the need for a distributable application for glycan microarray data management. The main features of CarbArrayART include: (i) Storage of quantified array data from different array layouts with scan data and array-specific metadata, such as lists of arrayed glycans, array geometry, information on glycan-binding samples, and experimental protocols.

View Article and Find Full Text PDF

Bacteria use carbohydrate-binding proteins (CBPs), such as lectins and carbohydrate-binding modules (CBMs), to anchor to specific sugars on host surfaces. CBPs in the gut microbiome are well studied, but their roles in the vagina microbiome and involvement in sexually transmitted infections, cervical cancer and preterm birth are largely unknown. We established a classification system for lectins and designed Hidden Markov Model (HMM) profiles for data mining of bacterial genomes, resulting in identification of >100,000 predicted bacterial lectins available at unilectin.

View Article and Find Full Text PDF

Motivation: A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures.

View Article and Find Full Text PDF

Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data.

View Article and Find Full Text PDF

Background: Linked Data has gained some attention recently in the life sciences as an effective way to provide and share data. As a part of the Semantic Web, data are linked so that a person or machine can explore the web of data. Resource Description Framework (RDF) is the standard means of implementing Linked Data.

View Article and Find Full Text PDF

Background: Recent progress in method development for characterising the branched structures of complex carbohydrates has now enabled higher throughput technology. Automation of structure analysis then calls for software development since adding meaning to large data collections in reasonable time requires corresponding bioinformatics methods and tools. Current glycobioinformatics resources do cover information on the structure and function of glycans, their interaction with proteins or their enzymatic synthesis.

View Article and Find Full Text PDF

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data.

View Article and Find Full Text PDF

The UniCarb KnowledgeBase (UniCarbKB; http://unicarbkb.org) offers public access to a growing, curated database of information on the glycan structures of glycoproteins. UniCarbKB is an international effort that aims to further our understanding of structures, pathways and networks involved in glycosylation and glyco-mediated processes by integrating structural, experimental and functional glycoscience information.

View Article and Find Full Text PDF

In the bioinformatics field, many computer algorithmic and data mining technologies have been developed for gene prediction, protein-protein interaction analysis, sequence analysis, and protein folding predictions, to name a few. This kind of research has branched off from the genomics field, creating the transcriptomics, proteomics, metabolomics, and glycomics research areas in the postgenomic age. In the glycomics field, given the complexity of glycan structures with their branches of monosaccharides in various conformations, new data mining and algorithmic methods have been developed in an attempt to gain a better understanding of glycans.

View Article and Find Full Text PDF