Publications by authors named "Yukichi Horiguchi"

An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid.

View Article and Find Full Text PDF

Various viral diseases can be widespread and cause severe disruption to global society. Highly sensitive virus detection methods are needed to take effective measures to prevent the spread of viral infection. This required the development of rapid virus detection technology to detect viruses at low concentrations, even in the biological fluid of patients in the early stages of the disease or environmental samples.

View Article and Find Full Text PDF

Droplet digital PCR (ddPCR) is accurate in nucleic acid quantification owing to its linearity and high sensitivity. Amplification of nucleic acid in droplets, however, is limited by the stability of droplets against thermal cycling. While the use of fluorinated oil or supplementation of surfactant could improve the stability of droplets, this process has also greatly increased the cost of ddPCR and limited post-PCR analysis.

View Article and Find Full Text PDF

Resistive pulse sensing (RPS) is an analytical method that can be used to individually count particles from a small sample. RPS simply monitors the physical characteristics of particles, such as size, shape, and charge density, and the integration of RPS with biosensing is an attractive theme to detect biological particles such as virus and bacteria. In this report, a methodology of biosensing on RPS was investigated.

View Article and Find Full Text PDF

Resistive pulse sensing (RPS) is an analytical technique for detecting particles with nano- to micrometer diameters, such as proteins, viruses, and bacteria. RPS is a promising tool for diagnosis as it can analyze the characteristics of target particles individually from ion current blockades as pulse waveforms. However, it is difficult to discriminate analog targets because RPS merely provides physical information such as size, shape, concentration, and charge density of the analyte.

View Article and Find Full Text PDF

Early diagnosis of metastatic cancers could greatly limit the number of cancer-associated deaths. Aberrant surface expression of sialic acid (hypersialylation) on tumors correlating with metastatic incidence and its involvement in tumorigenesis and progression is widely reported; hence detection of hypersialylated tumors may be an effective strategy to identify metastatic cancers. We herein report on the application of phenylboronic acid-installed PEGylated gold nanoparticles coupled with Toluidine blue O (T/BA-GNPs) as SERS probes to target surface sialic acid (N-acetylneuraminic acid, Neu5Ac).

View Article and Find Full Text PDF

Conducting polymers are good candidates for biosensor applications when molecular recognition element is imparted. We developed trisaccharide-grafted conducting polymers for label-free detection of the human influenza A virus (H1N1) with high sensitivity and specificity. A 3,4-ethylenedioxythiophene (EDOT) derivative bearing an oxylamine moiety was electrochemically copolymerized with EDOT.

View Article and Find Full Text PDF

A system to discriminate human or avian influenza A remains a highly sought-after tool for prevention of influenza pandemics in humans. Selective binding of the influenza A viral hemagglutinin (HA) to specific sialic acid (SA) receptors (Neu5Acα(2-6)Gal in humans, Neu5Acα(2-3)Gal in birds) is determined by the genotype of the HA and neuraminidase (NA) segments, making it one of the key characteristics that distinguishes human or avian influenza A virus. Here we demonstrate the direct detection of whole H1N1 influenza A virus using 6'-sialyllactose (Neu5Acα(2-6)Galβ(1-4)Glc, 6SL)-immobilized gold electrodes as biosensing surfaces.

View Article and Find Full Text PDF

A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability.

View Article and Find Full Text PDF

In order to detect an extremely low amount of human coagulation factor IX (FIX), poly(ethylene glycol) (PEG)/aptamer co-immobilized surface was constructed using original PEG-polyamine surface modification agents on surface plasmon resonance (SPR) sensor chip. Initially, a gold (Au) sensor chip of SPR was modified using poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PEG-b-PAMA) followed by treatment with SH-dT20 and was duplexed with anti-FIX aptamer extended using A24. Furthermore, the co-immobilization of pentaethylenehexamine-terminated poly(ethylene glycol) (N6-PEG) on the sensing surface completely quenched bio-fouling.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) possessing a sulfobetaine (SB) moiety at one end and a pentaethylenehexamine (N6) at the other end (SB-PEG-N6) was newly synthesized as a blocking agent for immunosensing surfaces. The N6 moiety strongly coordinates on gold surfaces, facilitating the tethering of the PEG chain to the sensor chip surface, and leaves the SB moiety free. Non-specific adsorption of bovine serum albumin (BSA) was analyzed on the SB-PEG-N6 tethered surface and compared with the methoxy-PEG-N6 (M-PEG-N6) tethered surface using a surface plasmon resonance (SPR) sensor.

View Article and Find Full Text PDF

To clarify the intra tumor distribution of gadlinium containing fullerene (Gd@C82), micro particle induced X-ray emission (Micro-PIXE) analysis were performed. The tumor bearing BALB/c mice were injected Gd@C82 and subcutaneous tumors were taken from 48h after the intravenous injection. Using the Micro-PIXE method, we could visualize Gd intra tumor distribution.

View Article and Find Full Text PDF

Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site.

View Article and Find Full Text PDF

An evanescent-field-coupled waveguide-mode (EFC-WM) sensor utilizes monolithic SiO2/Si/SiO2 sensing plates having a multilayered structure and is used to evaluate a blocking agent comprising poly(ethylene glycol)-based block copolymers. Factor IX (FIX) protein was detected using its aptamer, viz. FIX was immobilized on a glutaraldehyde-modified silica surface, and then treated with a biotinylated aptamer.

View Article and Find Full Text PDF

Label-free immunoassay systems have the advantages of procedural simplicity and a low construction cost of surfaces for immunosensing. When label-free immunoassay systems are considered, the nonspecific adsorption of unwanted materials should be eliminated unless it aids in the detection of error. PEG is well-known as a blocking agent for the prevention of the adsorption of nonspecific binding materials when coimmobilized with ligands for targets such as antibodies and oligonucleotides.

View Article and Find Full Text PDF

Core-polymerized and boron-conjugated micelles (PM micelles) were prepared by free radical copolymerization of a PEG-b-PLA block copolymer bearing an acetal group and a methacryloyl group (acetal-PEG-b-PLA-MA), with 1-(4-vinylbenzyl)-closo-carborane (VB-carborane), and the utility of these micelles as a tumor-targeted boron delivery system was investigated for boron neutron capture therapy (BNCT). Non-polymerized micelles (NPM micelles) that incorporated VB-carborane physically showed significant leakage of VB-carborane (ca. 50%) after 12 h incubation with 10% fetal bovine serum (FBS) at 37 °C.

View Article and Find Full Text PDF

Poly(ethylene glycol)-block-poly(2-(,-diethylamino)ethyl methacrylate) (PEG--PAMA) was found to solubilize fullerenes such as C, and this technique was applied to metallofullerenes. Gd@C was easily dissolved in water in the presence of PEG--PAMA without any covalent derivatization, forming a transparent complex about 20-30 nm in diameter. Low cytotoxicity was confirmed .

View Article and Find Full Text PDF

Photothermal reshaping of gold nanorods was triggered by pulsed-laser irradiation. The efficiency of the reshaping was strongly dependent on the surface conditions of the gold nanorods. When the gold nanorods were dispersed in concentrated hexadecyltrimethylammonium bromide (CTAB), the gold nanorods were efficiently transformed into a phi-shape.

View Article and Find Full Text PDF