Hydrogen boride (HB) sheets are emerging as a promising two-dimensional (2D) boron material, with potential applications as unique electrodes, substrates, and hydrogen storage materials. The 2D layered structure of HB was successfully synthesized using an ion-exchange method. The chemical bonding and structure of the HB sheets were investigated using Fourier Transform Infrared (FT-IR) spectroscopy and Transmission Electron Microscopy (TEM), respectively.
View Article and Find Full Text PDFTheoretically predicted materials are often synthesized in low yields, and unexpected relationships are often encountered between the target materials and byproducts. Recently, two-dimensional boron materials proposed on the basis of model simulations and first principles calculations and possessing abundant atomic structures have attracted considerable interest. Borophane or the hydrogen boride (HB) sheet has been predicted to be the Dirac nodal semimetal when it has a boron network of nonsymmorphic symmetry.
View Article and Find Full Text PDFAn unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis.
View Article and Find Full Text PDFWe present an enhanced method for synthesizing sheets of borophane. Despite the challenges associated with low efficiency, we discovered that incorporating hydrochloric acid into the ion-exchange reaction significantly improved the production yield from 20% to over 50%. After a thorough examination of the reaction, we gained insight into the underlying mechanisms and found that the use of hydrochloric acid provides two key benefits: accelerated production of borophene and isolation of high-purity products.
View Article and Find Full Text PDFWe have extensively searched for a cyclic hydrogenated boron molecule that has a three-center two-electron bond at the center. Using first-principles calculations, we discovered a stable molecule of 2:4:6:8:-2H-1,5:1,5-μH-BH and propose its existence. This molecule can be regarded as a building block for sheets of topological hydrogen boride (borophane), which was recently theoretically proposed and experimentally discovered.
View Article and Find Full Text PDFWe have investigated the structure of χ-borophene on Ag(111), a monolayer material of boron atoms, via total-reflection high-energy positron diffraction (TRHEPD). By comparing the experimental rocking-curves with ones for several structures calculated by using dynamical diffraction theory, we confirmed that the χ-borophene layer has a flat structure. The distance from the topmost layer of the metal crystal is 2.
View Article and Find Full Text PDFThe purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis.
View Article and Find Full Text PDF