We propose the use of the erfgau potential as a smooth alternative to the pure Coulomb potential between nuclei and electrons in simulating the dynamics of electrons within atoms and molecules driven by high-intensity laser pulses. Even without the sophistication of pseudopotentials, by utilizing a well-designed simple approximate potential, it is possible to make the simulations computationally less demanding while keeping accuracy. By employing the erfgau potential designed for the stationary state of hydrogen-like atoms, we demonstrate that it is possible to simulate not only the high harmonic generation from a hydrogen atom but also that of multielectron systems, including molecules.
View Article and Find Full Text PDFIntense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio.
View Article and Find Full Text PDFTime-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method.
View Article and Find Full Text PDF