An increase of hip abductor muscle strength contributes to the increase in gait speed. It is known that the rate of force development (RFD), an indicator of muscle strength, is increased by the combined use of low-intensity neuromuscular electrical stimulation (NMES) to the glutaeus medius (GM) and low-load resistance training (RT). However, it is unclear whether low-intensity neuromuscular electrical stimulation of the glutaeus medius during walking also increases the rate of force development.
View Article and Find Full Text PDFFenestration elements that enable spectrally selective dynamic modulation of the near-infrared region of the electromagnetic spectrum are of great interest as a means of decreasing the energy consumption of buildings by adjusting solar heat gain in response to external temperature. The binary vanadium oxide VO exhibits a near-room-temperature insulator-metal electronic transition accompanied by a dramatic modulation of the near-infrared transmittance. The low-temperature insulating phase is infrared transparent but blocks infrared transmission upon metallization.
View Article and Find Full Text PDFEnterovirus G (EV-G) belongs to the family of Picornaviridae. Two types of recombinant porcine EV-Gs carrying papain-like cysteine protease (PLCP) gene of porcine torovirus, a virus in Coronaviridae, are reported. Type 1 recombinant EV-Gs are detected in pig feces in Japan, USA, and Belgium and carry the PLPC gene at the junction site of 2C/3A genes, while PLPC gene replaces the viral structural genes in type 2 recombinant EV-G detected in pig feces in a Chinese farm.
View Article and Find Full Text PDFSapoviruses (SaVs) are enteric viruses belonging to the family Caliciviridae that infect humans and animals, including pigs. To date, SaVs have been classified into 19 genogroups (G) based on complete VP1 sequences; however, complete genome sequences of some SaV Gs are not yet available. In this study, we determined the full genome sequences of four SaVs (two GX and two GXI SaVs) and analyzed them together with those of other SaVs.
View Article and Find Full Text PDFThe Porcine Sapelovirus (PSV) is an enteric virus of pigs that can cause various disorders. However, there are few reports that describe the molecular characteristics of the PSV genome. In this study, almost the entire genomes of 23 PSVs detected in Japanese pigs were analyzed using bioinformatics.
View Article and Find Full Text PDFBackground: The relationship between peak torque of the knee extensor muscles and gait speed was previously investigated in patients with chronic stroke, but whether the rate of force development (RFD), another indicator of muscle strength, affected gait speed remained unknown.
Objective: To clarify the relationships between the RFD of the knee extensor muscles over multiple time intervals and gait speed in patients with chronic stroke.
Methods: Twenty chronic stroke patients participated in this study.
Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders, of pigs and wild boars, and are also detected in the feces of healthy pigs. The genus Teschovirus contains a single species Teschovirus A that currently includes 13 serotypes. In the present study, we identified novel PTVs that are distantly related to Teschovirus A and were found in fecal samples of pigs with or without diarrhea in Japan.
View Article and Find Full Text PDFA novel virus related to the Enterovirus/Sapelovirus supergroup in the family Picornaviridae was identified in healthy porcine feces in Japan by using a metagenomics approach. The genome of the virus, named Sapelo-like porcine picornavirus Japan (SPPVJ) Pig/Isi-Im1/JPN/2016, had a type-IV internal ribosomal entry site and carried a 6978-nucleotide-long single open reading frame encoding a 2326 amino acids (aa) polyprotein precursor. The coding sequence region consisted of leader protein (68 aa), a structural protein region P1 (824 aa), and the non-structural protein regions P2 (672 aa) and P3 (762 aa).
View Article and Find Full Text PDFSapoviruses (SaV) are enteric viruses infecting humans and animals. SaVs are highly diverse and are divided into multiple genogroups based on structural protein (VP1) sequences. SaVs detected from pigs belong to eight genogroups (GIII, GV, GVI, GVII, GVIII, GIX, GX, and GXI), but little is known about the SaV genogroup distribution in the Japanese pig population.
View Article and Find Full Text PDFFur seal feces-associated circular ssDNA virus (FSfaCV) was discovered in a pig for the first time in Japan using a next-generation sequencer with duplex-specific nuclease. Full genome of the virus showed approximately 92% similarity to FSfaCVs from New Zealand fur seals. Furthermore, we investigated the prevalence of the ssDNA virus in 85 piglets in Japan, and 65 piglets were positive (76%) for the virus.
View Article and Find Full Text PDFPorcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach.
View Article and Find Full Text PDFThis study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography.
View Article and Find Full Text PDFPorcine astroviruses (PoAstVs) are ubiquitous enteric virus of pigs that are distributed in several countries throughout the world. Since PoAstVs are detected in apparent healthy pigs, the clinical significance of infection is unknown. However, AstVs have recently been associated with a severe neurological disorder in animals, including humans, and zoonotic potential has been suggested.
View Article and Find Full Text PDFBackground: Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis.
View Article and Find Full Text PDFBovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run.
View Article and Find Full Text PDFBovine rotavirus B (RVB) is an etiological agent of diarrhea mostly in adult cattle. Currently, a few sequences of viral protein (VP)1, 2, 4, 6, and 7 and nonstructural protein (NSP)1, 2, and 5 of bovine RVB are available in the DDBJ/EMBL/GenBank databases, and none have been reported for VP3, NSP3, and NSP4. In order to fill this gap in the genetic characterization of bovine RVB strains, we used a metagenomics approach and sequenced and analyzed the complete coding sequences (CDS) of VP3, NSP3, and NSP4 genes, as well as the partial or complete CDS of other genes of RVBs detected from Japanese cattle.
View Article and Find Full Text PDFRecently, there have been reports of new members of posavirus-like viruses in the order Picornavirales. In this study, using a metagenomics approach, 11 posavirus-like sequences (>7,000 nucleotides) were detected in 155 porcine fecal samples. Phylogenetic analysis revealed that the newly identified virus sequences, together with other posavirus-like viruses, form distinct clusters within the order Picornavirales, composed of eight genogroups and unassigned sequences based on amino acid sequences of the helicase and RNA-dependent RNA polymerase regions, with <40 % and <50 % sequence identity, respectively.
View Article and Find Full Text PDFPorcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes.
View Article and Find Full Text PDFDuring an investigation of porcine fecal viruses using a metagenomics approach, a novel picornavirus was identified from the feces of a healthy two-month-old pig. This virus, named porcine picornavirus Japan (PPVJ), had a standard picornavirus genome organization, including the L protein region. The 5' untranslated region harbored a type II internal ribosomal entry site.
View Article and Find Full Text PDFTo gain further insight into the genomic features of bovine viral diarrhea virus 1 (BVDV-1) subgenotypes, we sequenced the complete genome of BVDV-1n Shitara/02/06 and BVDV-1o IS26NCP/01. The complete genome of Shitara/02/06 and IS26NCP/01 shared 77.7 to 79.
View Article and Find Full Text PDFBovine toroviruses (BToVs), belong to the subfamily Toroviridae within the family Coronaviridae, and are pathogens, causing enteric disease in cattle. In Japan, BToVs are distributed throughout the country and cause gastrointestinal infection of calves and cows. In the present study, complete genome sequences of two Japanese BToVs and partial genome sequences of two Japanese BToVs and one porcine torovirus (PToV) from distant regions in Japan were determined and genetic analyses were performed.
View Article and Find Full Text PDF