The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time.
View Article and Find Full Text PDFReactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca signals.
View Article and Find Full Text PDFStepwise two-photon absorption processes have received considerable attention, especially in photocatalysis, due to their relatively lower power threshold, characteristic spatial selectivity, amplification of chemical reactions, and so on. Meanwhile, studies on the relaxation dynamics of higher excited states in condensed systems have been limited for several molecular systems due to the short-lived nature of these states. In this study, we synthesized perylene-substituted perylene bisimide (PBI) and its derivate as model compounds and investigated their excited-state dynamics, including higher excited states, using pump-repump-probe spectroscopy.
View Article and Find Full Text PDFPerfluoroalkyl substances (PFASs) and fluorinated polymers (FPs) have been extensively utilized in various industries, whereas their extremely high stability poses environmental persistence and difficulty in waste treatment. Current decomposition approaches of PFASs and FPs typically require harsh conditions such as heating over 400 °C. Thus, there is a pressing need to develop a new technique capable of decomposing them under mild conditions.
View Article and Find Full Text PDFWe herein report photodoping and thereby photochromism of semiconductor nanocrystals under air in a temperature-responsive supramolecular gel and its back reactions induced by direct heating or near-infrared photothermal conversion. We also present their application to the spatiotemporal patterning of photoluminescence.
View Article and Find Full Text PDFA quasicrystal is an ordered but nonperiodic structure understood as a projection from a higher-dimensional periodic structure. Some physical properties of quasicrystals are different from those of conventional solids. An anomalous increase in heat capacity at high temperatures has been discussed for over two decades as a manifestation of a hidden high dimensionality of quasicrystals.
View Article and Find Full Text PDFNonlinear photochromic reactions that work with weak incoherent light are important for molecular operations with high spatial resolution and multiple photofunctions based on single molecules. However, nonlinear photochromic compounds generally require complex molecular design, restricting accessibility in various fields. Herein, we report nonlinear photochromic properties in a perylene-substituted rhodamine spirolactam derivative (Rh-Pe), which is synthesized from rhodamine B in facile procedures.
View Article and Find Full Text PDFIntensive Care Med Paediatr Neonatal
February 2024
Background: Nasal tracheal intubation (TI) represents a minority of all TI in the pediatric intensive care unit (PICU). The risks and benefits of nasal TI are not well quantified. As such, safety and descriptive data regarding this practice are warranted.
View Article and Find Full Text PDFOrganic ligands on the surface of nanocrystals (NCs) are extremely important in influencing various physical properties, such as dispersibility, electrical properties, and optical properties. Recent studies have revealed that a slight difference in the molecular structure of aliphatic organic ligands significantly affects the dispersibility of the NCs. On the other hand, the effects of the difference in the molecular structure of ligands on the excited-state dynamics of NCs remain elusive.
View Article and Find Full Text PDFPhotochromic reactions of the phenoxyl-imidazolyl radical complex (PIC), which is one of the rate-tunable fast T-type photoswitches, dramatically change by the introduction of bulky substituents around the photochromic units. While these substituents are expected to affect the initial bond dissociation processes, they have not been elucidated yet. Here, we revealed the ultrafast bond dissociation processes of PIC derivatives with different bulky substituents by subpicosecond to nanosecond transient absorption spectroscopy.
View Article and Find Full Text PDFWe demonstrate that the phenoxyl-imidazolyl radical complex (PIC), which is a rate-tunable fast photoswitch, can be used as a ligand that directly coordinates with iridium (III) ions. The iridium complexes show the characteristic photochromic reactions originating from the PIC moiety, whereas the behaviour of transient species is substantially different from that of the PIC.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2023
Background: Proteinase inhibitors are important for the regulation of the activity of enzymes essential for the survival and maintenance of all organisms, and they may hold medicinal and agricultural value. Hyacinthus orientalis L. serine protease inhibitors (HOSPIs), belonging to the Bowman-Birk type inhibitor (BBI) family, have strong inhibitory activities against mammalian serine proteinases.
View Article and Find Full Text PDFChem Commun (Camb)
February 2022
Reversible vapochromism in the NIR region is achieved for a mixed-valence platinum complex with lipid counterions, from which exclusion of crystallization water by organic vapor alters the lipid molecular orientation, which amplifies the information to changes in the 1D coordination structure and the electronic state.
View Article and Find Full Text PDFRab proteins are small GTPases that act as molecular switches for intracellular vesicle trafficking. Although their function is mainly regulated by regulatory proteins such as GTPase-activating proteins and guanine nucleotide exchange factors, recent studies have shown that some Rab proteins are physiologically phosphorylated in the switch II region by Rab kinases. As the switch II region of Rab proteins undergoes a conformational change depending on the bound nucleotide, it plays an essential role in their function as a 'switch'.
View Article and Find Full Text PDFSelf-learning hybrid Monte Carlo (SLHMC) is a first-principles simulation that allows for exact ensemble generation on potential energy surfaces based on density functional theory. The statistical sampling can be accelerated with the assistance of smart trial moves by machine learning potentials. In the first report [Nagai et al.
View Article and Find Full Text PDFTrans-p-methoxy arylazopyrazole spontaneously forms non-centrosymmetric polar crystals, which reversibly undergo liquefaction upon photoisomerization to the cis-isomer. This liquid cis-isomer has a large electric dipole moment and is highly soluble in water (solubility up to ≈58 mM), which is remarkably higher than that of the trans-isomer (690 μM). Vis-light illumination of the aqueous cis-isomer generates macroscopically oriented, non-centrosymmetric crystals at the air-water interface.
View Article and Find Full Text PDFWhen a strongly correlated system supports well-defined quasiparticles, it allows for an elegant one-body effective description within the non-Hermitian topological theory. While the microscopic many-body Hamiltonian of a closed system remains Hermitian, the one-body quasiparticle Hamiltonian is non-Hermitian due to the finite quasiparticle lifetime. We use such a non-Hermitian description in the heavy-fermion two-dimensional systems with the momentum-dependent hybridization to reveal a fascinating phenomenon which can be directly probed by the spectroscopic measurements, the bulk "Fermi arcs.
View Article and Find Full Text PDFThe combination of spin-orbit coupling with interactions results in many exotic phases of matter. In this Letter, we investigate the superconducting pairing instability of the two-dimensional extended Hubbard model with both Rashba and Dresselhaus spin-orbit coupling within the mean-field level at both zero and finite temperature. We find that both first- and second-order time-reversal symmetry breaking topological gapped phases can be achieved under appropriate parameters and temperature regimes due to the presence of a favored even-parity s+id-wave pairing even in the absence of an external magnetic field or intrinsic magnetism.
View Article and Find Full Text PDFA 72-year-old Japanese man with diabetes mellitus and hypertension presented with an acutely elevated serum creatinine level, from 1.02 to 4.13 mg/dL over 2 months as measured by the enzymatic method by pure-auto S CRE-N.
View Article and Find Full Text PDFCurrently, the use of amino acids in supplements and functional foods is increasing globally. However, there are no guidelines for the upper limit of ingestion for the safe use of these amino acids. Safety evaluation of chemical substances is generally performed through non-clinical and clinical studies.
View Article and Find Full Text PDFA homologue gene of the yeast natural resistance-associated macrophage protein (Nramp) family transporter smf2 was identified in the white-rot fungus Phanerochaete sordida YK-624. Relative expression levels of the homologue, designated PsMnt, were roughly equivalent in cultures containing 0 to 1000 μM Mn(II), a concentration non-toxic to the fungus. In the PsMnt-overexpressing mutant, cellular Mn accumulation and manganese peroxidase (MnP) activity increased significantly in 4-day cultures containing 10 μM MnSO4.
View Article and Find Full Text PDF