In noncentrosymmetric superconductors, superconducting and normal conductions can interchange on the basis of the current flow direction. This effect is termed a superconducting diode effect (SDE), which is a focal point of recent research. The broken inversion and time-reversal symmetry is believed to be the requirements of SDE, but their intrinsic role has remained elusive.
View Article and Find Full Text PDFMultiferroic materials have attracted considerable attention owing to their unique magnetoelectric or magnetooptical properties. The recent discovery of few-layer van der Waals multiferroic crystals provides a new research direction for controlling the multiferroic properties in the atomic layer limit. However, research on few-layer multiferroic crystals is limited and the effect of thickness-dependent symmetries on those properties is less explored.
View Article and Find Full Text PDFThe Bardeen-Cooper-Schrieffer (BCS) condensation and Bose-Einstein condensation (BEC) are the two limiting ground states of paired Fermion systems, and the crossover between these two limits has been a source of excitement for both fields of high temperature superconductivity and cold atom superfluidity. For superconductors, ultra-low doping systems like graphene and LiZrNCl successfully approached the crossover starting from the BCS-side. These superconductors offer new opportunities to clarify the nature of charged-particles transport towards the BEC regime.
View Article and Find Full Text PDFNonreciprocal or even-order nonlinear responses in symmetry-broken systems are powerful probes of emergent properties in quantum materials, including superconductors, magnets, and topological materials. Recently, vortex matter has been recognized as a key ingredient of giant nonlinear responses in superconductors with broken inversion symmetry. However, nonlinear effects have been probed as excess voltage only under broken time-reversal symmetry.
View Article and Find Full Text PDFPolar conductors/superconductors with Rashba-type spin-orbit interaction are potential material platforms for quantum transport and spintronic functionalities. One of their inherent properties is the nonreciprocal transport, where the rightward and leftward currents become inequivalent, reflecting spatial inversion/time-reversal symmetry breaking. Such a rectification effect originating from the polar symmetry has been recently observed at interfaces or bulk Rashba semiconductors, while its mechanism in a polar superconductor remains elusive.
View Article and Find Full Text PDFLack of spatial inversion symmetry in crystals offers a rich variety of physical phenomena, such as ferroelectricity and nonlinear optical effects (for example, second harmonic generation). One such phenomenon is magnetochiral anisotropy, where the electrical resistance depends on the current direction under the external magnetic field. We demonstrate both experimentally and theoretically that this magnetochiral anisotropy is markedly enhanced by orders of magnitude once the materials enter into a superconducting state.
View Article and Find Full Text PDF