Background: Cell-free and concentrated ascites reinfusion therapy (CART) is a strategy for improving various intractable symptoms due to refractory ascites, including hypoalbuminemia. CART has recently been applied in the treatment of cancer patients. This study was performed to assess the safety of CART in a single cancer institute.
View Article and Find Full Text PDFThe front cover artwork is provided by the group of Dr. Neil J. Stewart, Prof.
View Article and Find Full Text PDFHyperpolarized [1- C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1- C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1- C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations.
View Article and Find Full Text PDFAn improved biological weighting function (IBWF) is proposed to phenomenologically relate microdosimetric lineal energy probability density distributions with the relative biological effectiveness (RBE) for the in vitro clonogenic cell survival (surviving fraction = 10%) of the most commonly used mammalian cell line, i.e. the Chinese hamster lung fibroblasts (V79).
View Article and Find Full Text PDFBackground And Purpose: In Japan, the first domestic clinical trial of proton beam therapy for the liver was initiated as the Japan Clinical Oncology Group trial (JCOG1315C: Non-randomized controlled study comparing proton beam therapy and hepatectomy for resectable hepatocellular carcinoma). Purposes of this study were to develop a new dosimetric verification system and to carry out a credentialing for the JCOG1315C clinical trial.
Materials And Methods: Accuracy and differences in doses in proton treatment planning among participating institutions were surveyed and investigated.
Purpose: Task Group (TG) 224 was established by the American Association of Physicists in Medicine's Science Council under the Radiation Therapy Committee and Work Group on Particle Beams. The group was charged with developing comprehensive quality assurance (QA) guidelines and recommendations for the three commonly employed proton therapy techniques for beam delivery: scattering, uniform scanning, and pencil beam scanning. This report supplements established QA guidelines for therapy machine performance for other widely used modalities, such as photons and electrons (TG 142, TG 40, TG 24, TG 22, TG 179, and Medical Physics Practice Guideline 2a) and shares their aims of ensuring the safe, accurate, and consistent delivery of radiation therapy dose distributions to patients.
View Article and Find Full Text PDFIn radiotherapy involving craniospinal irradiation (CSI), field junctions of therapeutic beams are necessary, because a CSI target is generally several times larger than the maximum field size of the beams. The purpose of this study was to develop a simplified method for estimating dose uniformity around the field junctions in proton CSI. We estimated the dose profiles around the field junctions of proton beams using a simplified field-junction model, in which partial lateral dose distributions around the field edge were assumed to be approximated using the error function.
View Article and Find Full Text PDFIn the development of an external radiotherapy treatment planning system, the output factor (OPF) is an important value for the monitor unit calculations. We developed a proton OPF calculation model with consideration for the collimator aperture edge to account for the dependence of the OPF on the collimator aperture and distance in proton beam therapy. Five parameters in the model were obtained by fitting with OPFs measured by a pinpoint chamber with the circular radiation fields of various field radii and collimator distances.
View Article and Find Full Text PDFBackground And Purpose: Carbon-ion radiotherapy uses spread-out Bragg peaks (SOBP) to produce uniform biological effects within a target volume. The relative biological effectiveness is determined by the in vitro cell kill after a single dose is employed to design the SOBP. A question remains as to whether biological effects for in vivo tissues after fractionated doses are also uniform within the SOBP.
View Article and Find Full Text PDFIn radiation therapy, it is necessary to preset a monitor unit in an irradiation control system to deliver a prescribed absolute dose to a reference point in the planning target volume. The purpose of this study was to develop a model-based monitor unit calculation method for proton-beam therapy with a single-ring wobbling system. The absorbed dose at a calibration point per monitor unit had been measured for each beam-specific measurement condition without a patient-specific collimator or range compensator before proton therapeutic irradiation at Shizuoka Cancer Center.
View Article and Find Full Text PDFBackground: To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs.
Methods: Five patients (median age, 4 years; range, 2-11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System.
Treatment plans of carbon-ion radiotherapy have been made on the assumption that the beams are delivered instantaneously irrespective to the dose delivery time as well as the interruption time. The advanced therapeutic techniques such as a hypofractionation and a respiratory gating usually require more time to deliver a fractioned dose than conventional techniques. The purpose of this study was to investigate the effects of dose-delivery time structure on biological effectiveness in carbon-ion radiotherapy.
View Article and Find Full Text PDFThe aim of this study was to measure the RBE (relative biological effectiveness) and OER (oxygen enhancement ratio) for survival of cells within implanted solid tumors following exposure to 290MeV/nucleon carbon-ion beams or X-rays. Squamous cell carcinoma cells (SCCVII) were transplanted into the right hind legs of syngeneic C3H male mice. Irradiation with either carbon-ion beams with a 6-cm spread-out Bragg peak (SOBP, at 46 and 80keV/μm) or X-rays was delivered to 5-mm or less diameter tumors.
View Article and Find Full Text PDFPeriodic checks for proton machine quality assurance (QA) are significant for machine users safely and accurately to provide proton-beam treatment for cancer. Our aim in this study was to describe a revision to proton machine QA procedures for wobbled-proton-beam therapy at the Shizuoka Cancer Center (SCC) in Japan. The previous daily, monthly, and annual QA procedures were determined by reference to our past operational experience and to QA papers for medical accelerators.
View Article and Find Full Text PDFThe authors attempt to establish the relative biological effectiveness (RBE) calculation for designing therapeutic proton beams on the basis of microdosimetry. The tissue-equivalent proportional counter (TEPC) was used to measure microdosimetric lineal energy spectra for proton beams at various depths in a water phantom. An RBE-weighted absorbed dose is defined as an absorbed dose multiplied by an RBE for cell death of human salivary gland (HSG) tumor cells in this study.
View Article and Find Full Text PDFPurpose: To determine the oxidative capabilities of proton beams compared to X-rays based on lineal energy (y).
Materials And Methods: Microdosimetry was used to determine y-values of 155 MeV protons. Salmon testes deoxyribonucleic acid (ST-DNA) in solution and human tumor cells (MOLT-4) were irradiated with 200 kV X-rays (X) or 155 MeV protons at their plateau (P) and near their Bragg-peak (B).
Intensity-modulated proton therapy (IMPT) is expected to improve treatment results with fewer side effects than other proton therapies. The purpose of this study was to evaluate the tumor sites for which IMPT was effective under the same beam calculation conditions by planning IMPT for typical cases treated with passive scattering proton therapy (PSPT). We selected 16 cases of nasal cavity, lung, liver or prostate cancers as typical tumor sites receiving PSPT.
View Article and Find Full Text PDFPurpose: Microdosimetry has been developed for the evaluation of radiation quality, and single-event dose-mean lineal energy y(D) is well-used to represent the radiation quality. In this study, the changes of the relative biological effectiveness (RBE) values under the therapeutic conditions using a 6 MV linac were investigated with a microdosimetric method.
Methods: The y(D) values under the various irradiation conditions for x-rays from a 6 MV linac were measured with a tissue-equivalent proportional counter (TEPC) at an extremely low dose rate of a few tens of microGy/min by decreasing the gun grid voltage of the linac.
Cerebral radionecrosis is a significant side effect in radiotherapy for brain cancer. The purpose of this study is to calculate the relative biological effectiveness (RBE) of carbon-ion beams on brain cells and to show RBE-weighted dose distributions for cerebral radionecrosis speculation in a carbon-ion treatment planning system. The RBE value of the radionecrosis for the carbon-ion beam is calculated by the modified microdosimetric kinetic model on the assumption of a typical clinical α/β ratio of 2 Gy for cerebral radionecrosis in X-rays.
View Article and Find Full Text PDFThe RBE-weighted absorbed dose, called "biological dose," has been routinely used for carbon-ion treatment planning in Japan to formulate dose prescriptions for treatment protocols. This paper presents a microdosimetric approach to measuring the biological dose, which was redefined to be derived from microdosimetric quantities measured by a tissue-equivalent proportional counter (TEPC). The TEPC was calibrated in (60)Co gamma rays to assure a traceability of the TEPC measurement to Japanese standards and to eliminate the discrepancies among matching counters.
View Article and Find Full Text PDFOur cell survival data showed the obvious dependence of RBE on photon energy: The RBE value for 200 kV X-rays was approximately 10% greater than those for mega-voltage photon beams. In radiation therapy using mega-voltage photon beams, the photon energy distribution outside the field is different with that in the radiation field because of a large number of low energy scattering photons. Hence, the RBE values outside the field become greater.
View Article and Find Full Text PDFPurpose: Successful results in carbon-ion and proton radiotherapies can extend patients' lives and thus present a treatment option for younger patients; however, the undesired exposure to normal tissues outside the treatment volume is a concern. Organ-specific information on the absorbed dose and the biological effectiveness in the patient is essential for assessing the risk, but experimental dose assessment has seldom been done. In this study, absorbed doses, quality factors, and dose equivalents in water phantom outside of the irradiation field were determined based on lineal energy distributions measured with a commercial tissue equivalent proportional counter (TEPC) at passive carbon-ion and proton radiotherapy facilities.
View Article and Find Full Text PDFPurpose: Radiotherapy using charged and/or high-linear energy transfer (LET) particles has a long history, starting with proton beams up to now carbon-ions. Radiation quality of particle beams is different from conventional photons, and therefore the biological effects of high-LET irradiation have attracted scientific interests of many scientists in basic and clinical fields. A brief history of particle radiotherapy in the past half-century is followed by the reviewed biological effectiveness of high-LET charged particles.
View Article and Find Full Text PDF