Sensory signaling pathways use adaptation to dynamically respond to changes in their environment. Here, we report the mechanism of sensory adaptation in the Pil-Chp mechanosensory system, which the important human pathogen uses to sense mechanical stimuli during surface exploration. Using biochemistry, genetics, and cell biology, we discovered that the enzymes responsible for adaptation, a methyltransferase and a methylesterase, are segregated to opposing cell poles as explore surfaces.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop.
View Article and Find Full Text PDFThe opportunistic pathogen explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear.
View Article and Find Full Text PDFThe vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans.
View Article and Find Full Text PDFType IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production and transcription of virulence-associated genes. To dissect the specific interactions mediating the mechanochemical relay, we used affinity purification/mass spectrometry, directed co-immunoprecipitations in P.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors.
View Article and Find Full Text PDFPseudomonas aeruginosa, a ubiquitous bacteria found in diverse ecological niches, is an important cause of acute infections in immunocompromised individuals and chronic infections in patients with Cystic Fibrosis. One signaling molecule required for the coordinate regulation of virulence factors associated with acute infections is 3', 5'-cyclic adenosine monophosphate, (cAMP), which binds to and activates a catabolite repressor homolog, Vfr. Vfr controls the transcription of many virulence factors, including those associated with Type IV pili (TFP), the Type III secretion system (T3SS), the Type II secretion system, flagellar-mediated motility, and quorum sensing systems.
View Article and Find Full Text PDFThe Frz chemosensory system is a two-component signal transduction pathway that controls cell reversals and directional movements for the two motility systems in Myxococcus xanthus. To trigger cell reversals, FrzE, a hybrid CheA-CheY fusion protein, autophosphorylates the kinase domain at His-49, and phosphoryl groups are transferred to aspartate residues (Asp-52 and Asp-220) in the two receiver domains of FrzZ, a dual CheY-like protein that serves as the pathway output. The role of the receiver domain of FrzE was unknown.
View Article and Find Full Text PDFMyxococcus xanthus utilizes two distinct motility systems for movement (gliding) on solid surfaces: adventurous motility (A-motility) and social motility (S-motility). Both systems are regulated by the Frz signal transduction pathway, which controls cell reversals required for directed motility and fruiting body formation. The Frz chemosensory system, unlike the Escherichia coli chemotaxis system, contains proteins with multiple response regulator domains: FrzE, a CheA-CheY hybrid protein, and FrzZ, a CheY-CheY hybrid protein.
View Article and Find Full Text PDFThe motility of some kinds of bacteria depends on their spiral form, as does the virulence of certain pathogenic species. We propose a novel mechanism for the development of spiral shape in bacteria and the supercoiling of chains ('filaments') of many cells. Recently discovered actin-like proteins lying just under the cell wall form fibers that play a role in maintaining cell shape.
View Article and Find Full Text PDF