Publications by authors named "Yuki Araki"

Background & Aims: Excess sucrose intake induces metabolic syndrome. In human, abnormal lipids metabolism like obesity, hyperlipidemia and fatty liver are induced. However, excess sucrose causes different phenotypes in different species.

View Article and Find Full Text PDF

Recent advancements in computational science and interfacial measurements have sparked interest in microscopic water droplets and their diverse behaviors. A previous study using nonlinear spectroscopy revealed the heterogeneous wetting phenomenon of silica glass in response to humidity. Building on this premise, we employed high-resolution atomic force microscopy to investigate the wetting dynamics of silica glass surfaces at various humidity levels.

View Article and Find Full Text PDF

Excess sucrose intake has been found to be a major factor in the development of metabolic syndrome, especially in promoting nonalcoholic fatty liver disease. The excess fructose is believed to targets the liver to promote de novo lipogenesis, as described in major biochemistry textbooks. On the contrary, in this study, we explored the possible involvement of gut microbiota in excess sucrose-induced lipid metabolic disorders, to validate a novel mechanism by which excess sucrose causes hepatic lipid metabolic disorders via alterations to the gut microbial community structure.

View Article and Find Full Text PDF

We studied the surface structure and hydration structure of a bioinert mix-charged self-assembled monolayer (MC-SAM) comprised of sulfonic acid (SA)- and trimethylamine (TMA)-terminated thiols in liquid by frequency modulation atomic force microscopy (FM-AFM) at a molecular-scale. The TMA end groups showed a highly-ordered rectangular arrangement on a gold substrate in phosphate buffer saline (PBS). Highly structured water was observed at the interface of the MC-SAM and PBS, whereas a less structured hydration structure was observed on bioactive SAMs such as those with OH- and COO- terminal groups.

View Article and Find Full Text PDF

Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed.

View Article and Find Full Text PDF

An on‑line concentration and fluorescence determination HPLC for polycyclic aromatic hydrocarbons (PAHs) in seawater was proposed. An online concentration column packed with octadecyl polyvinyl alcohol polymer, a pump and a column switching valve were introduced in the conventional HPLC with a fluorescence detector. Only 1.

View Article and Find Full Text PDF