Publications by authors named "Yuke Zhong"

Objective: Corpus callosum (CC) damage is the most consistent and typical change in early Parkinson's disease (PD), and is associated with various PD symptoms. However, the precise relationship between CC subregions and specific PD symptoms have not been identified comprehensively. In this study, we investigated the association between specific CC subregion alterations and PD symptoms using diffusion-weighted imaging.

View Article and Find Full Text PDF

Background: Resting tremor in Parkinson's disease (PD) is associated with the activity in the basal ganglia and cerebello-thalamo-cortical circuits/network. However, most insights stem from functional MRI research, and structural studies, which can provide basis for and constrain functional activity, remains limited.

Methods: We investigated the structural change in PD patients with resting tremor (PD-WR) from a network perspective.

View Article and Find Full Text PDF

It's well known that sex is a risk factor for the occurrence of adverse events (AEs), most of which have found sex differences. Real-world data studies on the sex differences of fall-risk-increasing drugs (FRIDs) are few and far between, with most small-scale retrospective studies based on FRID classes. To establish a list of FRIDs and describe their sex differences, we used preferred terms from the Medical Dictionary for Regulatory Activities to search for AEs in the FDA Adverse Event Reporting System (FAERS), and then perform disproportionality analyses and female/male ratio analyses.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a highly prevalent gastrointestinal tract tumor. Several trials have demonstrated that the location of GC can affect patient prognosis. However, the factors determining tumor location remain unclear.

View Article and Find Full Text PDF

Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included.

View Article and Find Full Text PDF

Purpose: Cerebellum modulates the amplitude of resting tremor in Parkinson's disease (PD) via cerebello-thalamo-cortical (CTC) circuit. Tremor-related white matter alterations have been identified in PD patients by pathological studies, but in vivo evidence is limited; the influence of such cerebellar white matter alterations on tremor-related brain network, including CTC circuit, is also unclear. In this study, we investigated the cerebral and cerebellar white matter alterations in PD patients with resting tremor using diffusion tensor imaging (DTI).

View Article and Find Full Text PDF

Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot.

View Article and Find Full Text PDF

Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss.

View Article and Find Full Text PDF

Macrophages' activation plays a central role during the development and progression of inflammation, while the regulation of metabolic reprogramming of macrophages has been recently identified as a novel strategy for anti-inflammatory therapies. Our previous studies have found that tetrahedral framework nucleic acid (tFNA) plays a mild anti-inflammatory effect by inhibiting macrophage activation, but the specific mechanism remains unclear. Here, by metabolomics and RNA sequencing, choline uptake is identified to be significantly repressed by decreased slc44a1 expression in tFNA-treated activated macrophages.

View Article and Find Full Text PDF

Objective: To identify risk factors for early neurological deterioration (END) in acute lacunar stroke patients and its influence on functional outcome.

Methods: Consecutive acute lacunar stroke patients defined by magnetic resonance imaging (MRI) between January 2018 and June 2020 were included in the study. END was defined as any persisting increase in National Institutes of Health Stroke Scale (NIHSS) score of ⩾ 2 points post admission, and favorable outcome was defined as a modified Rankin Scale (mRS) of 0-2 at discharge.

View Article and Find Full Text PDF

Background: Patients with Parkinson's disease (PD) present various responsiveness to levodopa, but the cause of such differences in levodopa responsiveness is unclear. Previous studies related the damage of brain white matter (WM) to levodopa responsiveness in PD patients, but no study investigated the relationship between the structural brain network change in PD patients and their levodopa responsiveness.

Methods: PD patients were recruited and evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS).

View Article and Find Full Text PDF

Tremor is one of the core symptoms of Parkinson's disease (PD), but its mechanism is poorly understood. The cerebellum is a growing focus in PD-related researches and is reported to play an important role in tremor in PD. The cerebellum may participate in the modulation of tremor amplitude via cerebello-thalamo-cortical circuits.

View Article and Find Full Text PDF

AlCl -NaCl was utilized as an electrolyte in this work due to its low melting point and Lewis acidity, in which samarium exists in two oxidation states, Sm(III) and Sm(II), resulting in unique electrochemical behaviours. Sm metal dissolves in AlCl -NaCl melt to form SmCl , which is verified by electrochemical and spectroscopic techniques. As the Lewis acidity of the melt increases, the diffusion coefficient of Sm(II) gradually increases, and the activation energy of diffusion decreases.

View Article and Find Full Text PDF

In this work, we investigated the dissolution behavior of UO and UO in the LiCl-KCl molten salt using 2.9 or 9.5 wt % AlCl as a chlorination agent under an argon atmosphere at 450 °C.

View Article and Find Full Text PDF

Electrorefining process has been widely used to separate and purify metals, but it is limited by deposition potential of the metal itself. Here we report in-situ anodic precipitation (IAP), a modified electrorefining process, to purify aluminium from contaminants that are more reactive. During IAP, the target metals that are more cathodic than aluminium are oxidized at the anode and forced to precipitate out in a low oxidation state.

View Article and Find Full Text PDF

Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La and Nd ) is explored in molten LiCl-KCl-LiF-LnCl salts using electrochemical, spectroscopic, and computational approaches.

View Article and Find Full Text PDF