SUPPRESSOR OF MAX2-LIKE 6, 7, and 8 (SMXL6,7,8) function as repressors and transcription factors of the strigolactone (SL) signaling pathway, playing an important role in the development and stress tolerance in . However, the molecular mechanism by which SMXL6,7,8 negatively regulate drought tolerance and ABA response remains largely unexplored. In the present study, the interacting protein and downstream target genes of SMXL6,7,8 were investigated.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2023
Over half of mitochondrial proteins are imported from the cytosol via the pre-sequence pathway, controlled by the TOM complex in the outer membrane and the TIM23 complex in the inner membrane. The mechanisms through which proteins are translocated via the TOM and TIM23 complexes remain unclear. Here we report the assembly of the active TOM-TIM23 supercomplex of Saccharomyces cerevisiae with translocating polypeptide substrates.
View Article and Find Full Text PDFAtHSPR forms a complex with KNAT5 and OFP1 to regulate primary root growth through GA-mediated root meristem activity. KNAT5-OFP1 functions as a negative regulator of AtHSPR in response to GA. Plant root growth is modulated by gibberellic acid (GA) signaling and depends on root meristem maintenance.
View Article and Find Full Text PDFDrought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear.
View Article and Find Full Text PDFFlowering is a dynamic and synchronized process, the timing of which is finely tuned by various environmental signals. A T-DNA insertion mutant in Arabidopsis HEAT SHOCK PROTEIN-RELATED (AtHSPR) exhibited late-flowering phenotypes under both long-day (LD) and short-day (SD) conditions compared to the wild-type, while over-expression of AtHSPR promoted flowering. Exogenous application of gibberellin (GA) partially rescued the late-flowering mutant phenotype under both LD and SD conditions, suggesting that AtHSPR is involved in GA biosynthesis and/or the GA signaling that promotes flowering.
View Article and Find Full Text PDFStrigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms.
View Article and Find Full Text PDFHydrogen peroxide (HO) is the key factor in many physiological and metabolic processes in plants. During seed germination, exogenous HO application influences gravitropism and induces curvature of the primary root in grass pea and pea seedlings. However, it remains unclear whether and how this happens in the model plant Arabidopsis thaliana.
View Article and Find Full Text PDF