Publications by authors named "Yukary Nakamura"

The organotin trimethyltin (TMT) is known to cause neuronal degeneration in the murine brain. Earlier studies indicate that TMT-induced neuronal degeneration is enhanced by adrenalectomy and prevented by exogenous glucocorticoid. The aim of this study was to investigate the regulation of TMT neuroxicity by corticosterone receptors including type I (mineralocorticoid receptor, MR) and type II (glucocorticoid receptor, GR) in adult mice.

View Article and Find Full Text PDF

The organotin trimethyltin (TMT) is well known to cause neuronal degeneration in the hippocampal dentate gyrus of mice. The first purpose of the present study was to examine whether the cyclooxygenase (COX) inhibitor indomethacin could ameliorate neuronal degeneration in the dentate gyrus of mice following TMT treatment in vivo. The systemic injection into mice of TMT at 2.

View Article and Find Full Text PDF

Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells.

View Article and Find Full Text PDF

Notoginsenoside R1 (NTR1) is the main active ingredient in Panax notoginseng, a herbal medicine widely used in Asia for years. The purpose of this study was to investigate pharmacological properties of NTR1 on neurotoxicity of glutamate (Glu) in primary cultured mouse cortical neurons along with its possible mechanism of action. We found that NTR1 significantly protected neurons from the loss of cellular viability caused by brief exposure to 10 microM Glu for 1 hr in a dose-dependent manner at concentrations from 0.

View Article and Find Full Text PDF

Adrenaline is believed to play a dual role as a neurotransmitter in the central nervous system and an adrenomedullary hormone in the peripheral tissues. In contrast to accumulating evidence for the involvement in endochondral ossification, osteoblastogenesis, and osteoclastogenesis, little attention has been paid to the role of adrenergic signals in the mechanisms underlying proliferation and differentiation of mesenchymal stem cells with self-renewal capacity and multi-potentiality to differentiate into osteoblast, chondrocyte, adipocyte, and myocyte lineages. Expression of mRNA was seen for different adrenergic receptor (AdR) subtypes, including beta(2)AdR, in the mesenchymal stem cell line C3H10T1/2 cells and mouse bone marrow mesenchymal stem cells before differentiation.

View Article and Find Full Text PDF