Chemokine receptors play a central role in the maintenance of immune homeostasis and development of inflammation by directing leukocyte migration to tissues. GPR15 is a G protein-coupled receptor (GPCR) that was initially known as a co-receptor for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), with structural similarity to other members of the chemoattractant receptor family. Since the discovery of its novel function as a colon-homing receptor of T cells in mice a decade ago, GPR15 has been rapidly gaining attention for its involvement in a variety of inflammatory and immune disorders.
View Article and Find Full Text PDFWe currently understand how the different intracellular pathways, secretion, endocytosis, and autophagy are regulated by small GTPases. In contrast, it is unclear how these pathways are coordinated to ensure efficient cellular response to stress. Rab GTPases localize to specific organelles through their hypervariable domain (HVD) to regulate discrete steps of individual pathways.
View Article and Find Full Text PDFGPR15 is a G-protein-coupled receptor (GPCR) that directs lymphocyte homing to the colon and skin. Recent studies have identified a chemokine-like protein GPR15L (also known as C10orf99) as a functional ligand of GPR15. In this study, we examined the structural elements that regulate the GPR15-GPR15L interaction with primary focus on post-translational modifications (PTMs) of receptor N-terminus and on the C-terminus of the ligand.
View Article and Find Full Text PDFRepeated dosing of drugs targeting G protein-coupled receptors can stimulate antagonist tolerance, which reduces their efficacy; thus, strategies to avoid tolerance are needed. The efficacy of AMD3100, a competitive antagonist of the chemokine receptor CXCR4 that mobilizes leukemic blasts from the bone marrow into the blood to sensitize them to chemotherapy, is reduced after prolonged treatment. Tolerance to AMD3100 increases the abundance of CXCR4 on the surface of leukemic blasts, which promotes their rehoming to the bone marrow.
View Article and Find Full Text PDFMost newly synthesized proteins destined for the secretory pathway contain a signal peptide (SP) that triggers cotranslational translocation into the endoplasmic reticulum (ER). However, how small polypeptides undergo ER translocation is not fully understood. In this issue of , Guo describe a mechanism for posttranslational translocation of small secretory proteins featuring a positive charge within the SP N-terminal region.
View Article and Find Full Text PDFGPR15 is an orphan G protein-coupled receptor (GPCR) that serves for an HIV coreceptor and was also recently found as a novel homing receptor for T-cells implicated in colitis. We show that GPR15 undergoes a constitutive endocytosis in the absence of ligand. The endocytosis was clathrin dependent and partially dependent on β-arrestin in HEK293 cells, and nearly half of the internalized GPR15 receptors were recycled to the plasma membrane.
View Article and Find Full Text PDFThe activity of potassium (K(+)) channels critically depends on their density on the cell surface membrane, which is regulated by dynamic protein-protein interactions that often involve distinct trafficking signals on the cargo proteins. In this paper we explored the possibility of utilizing the Saccharomyces cerevisiae strain B31 for identification of the signal motifs that regulate surface expression of membrane proteins and for studying structure-function relationships of K(+) channels. B31 cells lack the K(+) efflux system and were reported to show overloaded K(+)-mediated growth inhibition in high K(+) media upon heterologous expression of a mammalian inwardly rectifying K(+) channel (Kir2.
View Article and Find Full Text PDFCell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg(310)-Arg(311)) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15.
View Article and Find Full Text PDFCells of the human immune system are important target cells for measles virus (MeV) infection and infection of these cells may contribute to the immunologic abnormalities and immune suppression that characterize measles. The thymus is the site for production of naïve T lymphocytes and is infected during measles. To determine which populations of thymocytes are susceptible to MeV infection and whether strains of MeV differ in their ability to infect thymocytes, we used ex vivo human thymus organ cultures to assess the relative susceptibility of different subpopulations of thymocytes to infection with wild type and vaccine strains of MeV.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2011
Hydrogen sulfide (H(2)S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H(2)S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity.
View Article and Find Full Text PDFMembrane trafficking is dictated by dynamic molecular interactions involving discrete determinants in the cargo proteins and the intracellular transport machineries. We have previously reported that cell surface expression of GPR15, a G protein-coupled receptor (GPCR) that serves as a co-receptor for HIV, is correlated with the mode III binding of 14-3-3 proteins to the receptor C terminus. Here we provide a mechanistic basis for the role of 14-3-3 in promoting the cell surface expression of GPR15.
View Article and Find Full Text PDFThe regulation of protein expression on the cell surface membrane is an important component of the cellular response to extracellular signalling. The translation of extracellular signalling into specific protein localization often involves the post-translational modification of cargo proteins. Using a genetic screen of random peptides, we have previously identified a group of C-terminal sequences, represented by RGRSWTY-COOH (termed'SWTY'), which are capable of overriding an endoplasmic reticulum localization signal and directing membrane proteins to the cell surface via specific binding to 14-3-3 proteins.
View Article and Find Full Text PDFHIV infection is associated with the progressive loss of CD4(+) T cells through their destruction or decreased production. A central, yet unresolved issue of HIV disease is the mechanism for this loss, and in particular whether HIV-specific CD4(+) T cells are preferentially affected. Here we show that HIV-specific memory CD4(+) T cells in infected individuals contain more HIV viral DNA than other memory CD4(+) T cells, at all stages of HIV disease.
View Article and Find Full Text PDFImmune reconstitution is a critical component of recovery after treatment of human immunodeficiency virus (HIV) infection, cancer chemotherapy, and hematopoietic stem cell transplantation. The ability to enhance T-cell production would benefit such treatment. We examined the effects of exogenous interleukin-7 (IL-7) on apoptosis, proliferation, and the generation of T-cell receptor rearrangement excision circles (TRECs) in human thymus.
View Article and Find Full Text PDF