This study explores the structural and mechanical properties of bacterial cellulose-polyethylene glycol diacrylate (BC-PEGDA) composite gels. The molecular dynamics results obtained by solid-state C nuclear magnetic resonance analyses suggested that BC and PEGDA molecules were incompatible as composite gels, though BC fibers and PEGDA interact with each other. The mechanical strength of the gels depended on the amount of PEGDA, becoming softer and more stretchable when a tensile force was applied, but for a large amount of PEGDA, they became brittle.
View Article and Find Full Text PDFA combination of bacterial cellulose (BC) gel and amphiphilic block copolymer nanoparticles was investigated as a drug delivery system (DDS) for hydrophobic active ingredients. Poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) and retinol were used as the block copolymer and hydrophobic active ingredient, respectively. The BC gel was capable of incorporating copolymer nanoparticles and releasing them in an acetic acid-sodium acetate buffer solution (pH 5.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2015
A composite structure was formed between polyethylene glycol diacrylate (PEGDA) and bacterial cellulose (BC) gels swollen in polyethylene glycol (PEG) as a solvent (BC/PEG gel) to improve the mechanical strength of the gels. The mechanical strength under compression and the rheostatic properties of the gels were evaluated. The compression test results indicated that the mechanical strength of the gels depended on the weight percent of cross-linked PEGDA in the gel, the chain length between the cross-linking points, and the cross-linking density of PEGDA polymers.
View Article and Find Full Text PDFAlthough cellulose is the most abundant biopolymer in nature, the detailed mechanisms of cellulose biosynthesis remain unknown. Acetobacter xylinum is one of the best-studied model organisms for cellulose biosynthesis. Interestingly, the over-expression of the cmcax gene cause enhancement of cellulose production in A.
View Article and Find Full Text PDFComplete assignments of the cross-polarization/magic-angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) spectrum of the cellulose I-ethylenediamine (EDA) complex, which is the intermediate of the reaction from cellulose I to cellulose III(I), were performed. In this paper, we used the 13C-enriched cellulose that was biosynthesized by Acetobacter xylinum ATCC10245 strain from culture medium containing D-(2-13C), D-(3-13C), or D-(5-13C)glucose as a carbon source. After conversion into cellulose I-EDA complex by sufficient EDA treatment, the CP/MAS 13C NMR spectra of the 13C-enriched cellulose I-EDA complexes were measured.
View Article and Find Full Text PDF