The non-coding GGGGCC hexanucleotide repeat expansion (HRE) in gene is a dominant cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This intronic mutation elicits the formation of nuclear and cytoplasmic inclusions containing RNA, RNA-binding proteins, and HRE-derived dipeptide repeat proteins (DPRs), leading to neurodegeneration via the gain-of-toxic function or loss-of-function of relevant proteins. Using C9-500 mice harboring ~500 repeats of the GGGGCC sequence in human gene, we investigated the effects of rifampicin against HRE-related pathological phenotypes.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2022
Using wireless multichannel near-infrared spectroscopy, regional difference in cortical activity over the prefrontal cortex (PFC) was examined before and during overground walking and in response to changes in speed and cognitive demand. Oxygenated-hemoglobin concentration (Oxy-Hb) as index of cortical activity in ventrolateral PFC (VLPFC), dorsolateral PFC (DLPFC), and frontopolar cortex (FPC) was measured in 14 subjects, whereas heart rate was measured as estimation of exercise intensity in six subjects. The impact of mental imagery on prefrontal Oxy-Hb was also explored.
View Article and Find Full Text PDFα-Synuclein oligomers are thought to play an important role in the pathogenesis of dementia with Lewy bodies (DLB). There is no effective cure for DLB at present. Previously, we demonstrated that in APP- and tau-transgenic mice, oral or intranasal rifampicin reduced brain Aβ and tau oligomers and improved mouse cognition.
View Article and Find Full Text PDF